Lighter is a YAML-driven deep learning framework built on PyTorch Lightning. Define your model, data, and training in config files instead of writing boilerplate code.
pip install lighterCreate config.yaml:
trainer:
_target_: pytorch_lightning.Trainer
max_epochs: 10
system:
_target_: lighter.System
model:
_target_: torchvision.models.resnet18
num_classes: 10
criterion:
_target_: torch.nn.CrossEntropyLoss
optimizer:
_target_: torch.optim.Adam
params: "$@system::model.parameters()"
lr: 0.001
dataloaders:
train:
_target_: torch.utils.data.DataLoader
batch_size: 32
dataset:
_target_: torchvision.datasets.CIFAR10
root: ./data
train: true
download: true
transform:
_target_: torchvision.transforms.ToTensorRun:
lighter fit config.yamlOverride from CLI:
lighter fit config.yaml system::optimizer::lr=0.01- 📚 Get Started
- ⚙️ Configuration Guide
- 🔌 Adapters
- 🏗️ Architecture
- 💬 Discord
- 🐛 GitHub Issues
- 📺 YouTube
- 🤝 Contributing
@article{lighter,
doi = {10.21105/joss.08101},
year = {2025}, publisher = {The Open Journal}, volume = {10}, number = {111}, pages = {8101},
author = {Hadzic, Ibrahim and Pai, Suraj and Bressem, Keno and Foldyna, Borek and Aerts, Hugo JWL},
title = {Lighter: Configuration-Driven Deep Learning},
journal = {Journal of Open Source Software}
}