A pure python library that implements abstraction of data.
python3 -m pip install --upgrade pyrebel
git clone https://github.com/ps-nithin/pyrebel
cd pyrebel
python3 -m pip install .
Demo programs are found in 'demo/' directory.
cd demo/
Usage:
python3 pyrebel_main.py --input <filename.png>
Optional arguments
--threshold <value>
Selects the threshold of abstraction. Defaults to 5.
For example,
python3 pyrebel_main.py --input images/abc.png --threshold 10
The output is written to 'output.png'
This is a demo of edge detection achieved using data abstraction.
python3 pyrebel_main_edge.py --input <filename>
For example,
python3 pyrebel_main_edge.py --input images/wildlife.jpg
The output is written to 'output.png'.
Below is a sample input image,
Below is the output image,
This is a demo of pattern recognition achieved using data abstraction.
- Learning
Usage:python3 pyrebel_main_learn.py --learn /path/to/image/directory/
For example runningpython3 pyrebel_main_learn.py --learn images/train-hand/
learns all the images in the directory and links the filename with the signatures. - Recognition
Usage:python3 pyrebel_main_learn.py --recognize <filename>
For example runningpython3 pyrebel_main_learn.py --recognize images/recognize.png
displays the symbols recognized in the file 'images/recognize.png'.
To reset the knowledge base just delete file 'know_base.pkl' in the current working directory. The program expects a single pattern in the input image. Otherwise, a pattern has to be selected by changing variable 'blob_index' accordingly.