Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

auto identify the effect modifier columns for `effect' method for EconML estimators #1061

Merged
merged 2 commits into from
Nov 27, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
11 changes: 6 additions & 5 deletions dowhy/causal_estimators/econml.py
Original file line number Diff line number Diff line change
Expand Up @@ -245,7 +245,6 @@ def estimate_effect(
# Changing shape to a list for a singleton value
# Note that self._control_value is assumed to be a singleton value
self._treatment_value = parse_state(self._treatment_value)

est = self.effect(X_test)
ate = np.mean(est, axis=0) # one value per treatment value

Expand Down Expand Up @@ -305,7 +304,6 @@ def apply_multitreatment(self, df: pd.DataFrame, fun: Callable, *args, **kwargs)
filtered_df = None
else:
filtered_df = df.values

for tv in self._treatment_value:
ests.append(
fun(
Expand All @@ -331,7 +329,8 @@ def effect(self, df: pd.DataFrame, *args, **kwargs) -> np.ndarray:
def effect_fun(filtered_df, T0, T1, *args, **kwargs):
return self.estimator.effect(filtered_df, T0=T0, T1=T1, *args, **kwargs)

return self.apply_multitreatment(df, effect_fun, *args, **kwargs)
Xdf = df[self._effect_modifier_names] if df is not None else df
return self.apply_multitreatment(Xdf, effect_fun, *args, **kwargs)

def effect_interval(self, df: pd.DataFrame, *args, **kwargs) -> np.ndarray:
"""
Expand All @@ -346,7 +345,8 @@ def effect_interval_fun(filtered_df, T0, T1, *args, **kwargs):
filtered_df, T0=T0, T1=T1, alpha=1 - self.confidence_level, *args, **kwargs
)

return self.apply_multitreatment(df, effect_interval_fun, *args, **kwargs)
Xdf = df[self._effect_modifier_names] if df is not None else df
return self.apply_multitreatment(Xdf, effect_interval_fun, *args, **kwargs)

def effect_inference(self, df: pd.DataFrame, *args, **kwargs):
"""
Expand All @@ -359,7 +359,8 @@ def effect_inference(self, df: pd.DataFrame, *args, **kwargs):
def effect_inference_fun(filtered_df, T0, T1, *args, **kwargs):
return self.estimator.effect_inference(filtered_df, T0=T0, T1=T1, *args, **kwargs)

return self.apply_multitreatment(df, effect_inference_fun, *args, **kwargs)
Xdf = df[self._effect_modifier_names] if df is not None else df
return self.apply_multitreatment(Xdf, effect_inference_fun, *args, **kwargs)

def effect_tt(self, df: pd.DataFrame, treatment_value, *args, **kwargs):
"""
Expand Down
57 changes: 53 additions & 4 deletions tests/causal_estimators/test_econml_estimator.py
Original file line number Diff line number Diff line change
Expand Up @@ -28,7 +28,7 @@ def test_backdoor_estimators(self):
data = datasets.linear_dataset(
10,
num_common_causes=4,
num_samples=10000,
num_samples=1000,
num_instruments=2,
num_effect_modifiers=2,
num_treatments=1,
Expand Down Expand Up @@ -59,18 +59,25 @@ def test_backdoor_estimators(self):
"fit_params": {},
},
)
# Checking that the CATE estimates are not identical
dml_cate_estimates_f = dml_estimate.cate_estimates.flatten()
assert pytest.approx(dml_cate_estimates_f[0], 0.01) != dml_cate_estimates_f[1]
# Test ContinuousTreatmentOrthoForest
orthoforest_estimate = model.estimate_effect(
identified_estimand,
method_name="backdoor.econml.orf.DMLOrthoForest",
target_units=lambda df: df["X0"] > 2,
method_params={"init_params": {"n_trees": 10}, "fit_params": {}},
)
# Checking that the CATE estimates are not identical
orthoforest_cate_estimates_f = orthoforest_estimate.cate_estimates.flatten()
assert pytest.approx(orthoforest_cate_estimates_f[0], 0.01) != orthoforest_cate_estimates_f[1]

# Test LinearDRLearner
data_binary = datasets.linear_dataset(
10,
num_common_causes=4,
num_samples=10000,
num_samples=1000,
num_instruments=2,
num_effect_modifiers=2,
treatment_is_binary=True,
Expand All @@ -94,14 +101,56 @@ def test_backdoor_estimators(self):
"fit_params": {},
},
)
drlearner_cate_estimates_f = drlearner_estimate.cate_estimates.flatten()
assert pytest.approx(drlearner_cate_estimates_f[0], 0.01) != drlearner_cate_estimates_f[1]

def test_metalearners(self):
data = datasets.linear_dataset(
10,
num_common_causes=4,
num_samples=1000,
num_instruments=2,
num_effect_modifiers=2,
num_treatments=1,
treatment_is_binary=True,
)
df = data["df"]
model = CausalModel(
data=data["df"],
treatment=data["treatment_name"],
outcome=data["outcome_name"],
effect_modifiers=data["effect_modifier_names"],
graph=data["gml_graph"],
)
identified_estimand = model.identify_effect(proceed_when_unidentifiable=True)
# Test LinearDML
sl_estimate = model.estimate_effect(
identified_estimand,
method_name="backdoor.econml.metalearners.SLearner",
target_units="ate",
method_params={"init_params": {"overall_model": GradientBoostingRegressor()}, "fit_params": {}},
)
# checking that CATE estimates are not identical
sl_cate_estimates_f = sl_estimate.cate_estimates.flatten()
assert pytest.approx(sl_cate_estimates_f[0], 0.01) != sl_cate_estimates_f[1]

# predict on new data
sl_estimate_test = model.estimate_effect(
identified_estimand,
method_name="backdoor.econml.metalearners.SLearner",
fit_estimator=False,
target_units=data["df"].sample(frac=0.1),
)
sl_cate_estimates_test_f = sl_estimate_test.cate_estimates.flatten()
assert pytest.approx(sl_cate_estimates_test_f[0], 0.01) != sl_cate_estimates_test_f[1]

def test_iv_estimators(self):
keras = pytest.importorskip("keras")
# Setup data
data = datasets.linear_dataset(
10,
num_common_causes=4,
num_samples=10000,
num_samples=1000,
num_instruments=2,
num_effect_modifiers=2,
num_treatments=1,
Expand Down Expand Up @@ -164,7 +213,7 @@ def test_iv_estimators(self):
data = datasets.linear_dataset(
10,
num_common_causes=4,
num_samples=10000,
num_samples=1000,
num_instruments=1,
num_effect_modifiers=2,
num_treatments=1,
Expand Down