Skip to content

Commit

Permalink
Merge pull request #493 from pygae/bump-sympy
Browse files Browse the repository at this point in the history
Bump sympy in CI
  • Loading branch information
utensil authored Mar 28, 2024
2 parents 0046162 + a4bfed2 commit 2ca0c66
Show file tree
Hide file tree
Showing 8 changed files with 57 additions and 422 deletions.
4 changes: 2 additions & 2 deletions .github/workflows/ci.yml
Original file line number Diff line number Diff line change
Expand Up @@ -52,8 +52,8 @@ jobs:
--cov=galgebra \
--nbval examples/ipython/ \
test \
--current-env \
--sanitize-with test/.nbval_sanitize.cfg \
--nbval-current-env \
--nbval-sanitize-with test/.nbval_sanitize.cfg \
"${PYTEST_ARGS[@]}"
- name: Upload coverage to Codecov
if: "matrix.python-version == '3.11'"
Expand Down
28 changes: 14 additions & 14 deletions examples/ipython/LaTeX.ipynb

Large diffs are not rendered by default.

32 changes: 13 additions & 19 deletions examples/ipython/Old Format.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -127,9 +127,7 @@
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"scrolled": false
},
"metadata": {},
"outputs": [
{
"name": "stderr",
Expand Down Expand Up @@ -391,7 +389,7 @@
"\\begin{equation*} B = B^{r\\theta } \\boldsymbol{e}_{r}\\wedge \\boldsymbol{e}_{\\theta } + B^{r\\phi } \\boldsymbol{e}_{r}\\wedge \\boldsymbol{e}_{\\phi } + B^{\\theta \\phi } \\boldsymbol{e}_{\\theta }\\wedge \\boldsymbol{e}_{\\phi } \\end{equation*}\n",
"\\begin{equation*} \\boldsymbol{\\nabla} f = \\partial_{r} f \\boldsymbol{e}_{r} + \\frac{\\partial_{\\theta } f }{r^{2}} \\boldsymbol{e}_{\\theta } + \\frac{\\partial_{\\phi } f }{r^{2} {\\sin{\\left (\\theta \\right )}}^{2}} \\boldsymbol{e}_{\\phi } \\end{equation*}\n",
"\\begin{equation*} \\boldsymbol{\\nabla} \\cdot A = \\frac{A^{\\theta } }{\\tan{\\left (\\theta \\right )}} + \\partial_{\\phi } A^{\\phi } + \\partial_{r} A^{r} + \\partial_{\\theta } A^{\\theta } + \\frac{2 A^{r} }{r} \\end{equation*}\n",
"\\begin{equation*} -I (\\boldsymbol{\\nabla} \\W A) = \\frac{\\sqrt{r^{4} {\\sin{\\left (\\theta \\right )}}^{2}} \\left(\\frac{2 A^{\\phi } }{\\tan{\\left (\\theta \\right )}} + \\partial_{\\theta } A^{\\phi } - \\frac{\\partial_{\\phi } A^{\\theta } }{{\\sin{\\left (\\theta \\right )}}^{2}}\\right)}{r^{2}} \\boldsymbol{e}_{r} + \\frac{- r^{2} {\\sin{\\left (\\theta \\right )}}^{2} \\partial_{r} A^{\\phi } - 2 r A^{\\phi } {\\sin{\\left (\\theta \\right )}}^{2} + \\partial_{\\phi } A^{r} }{\\sqrt{r^{4} {\\sin{\\left (\\theta \\right )}}^{2}}} \\boldsymbol{e}_{\\theta } + \\frac{r^{2} \\partial_{r} A^{\\theta } + 2 r A^{\\theta } - \\partial_{\\theta } A^{r} }{\\sqrt{r^{4} {\\sin{\\left (\\theta \\right )}}^{2}}} \\boldsymbol{e}_{\\phi } \\end{equation*}\n",
"\\begin{equation*} -I (\\boldsymbol{\\nabla} \\W A) = \\frac{\\sqrt{r^{4} {\\sin{\\left (\\theta \\right )}}^{2}} \\cdot \\left(\\frac{2 A^{\\phi } }{\\tan{\\left (\\theta \\right )}} + \\partial_{\\theta } A^{\\phi } - \\frac{\\partial_{\\phi } A^{\\theta } }{{\\sin{\\left (\\theta \\right )}}^{2}}\\right)}{r^{2}} \\boldsymbol{e}_{r} + \\frac{- r^{2} {\\sin{\\left (\\theta \\right )}}^{2} \\partial_{r} A^{\\phi } - 2 r A^{\\phi } {\\sin{\\left (\\theta \\right )}}^{2} + \\partial_{\\phi } A^{r} }{\\sqrt{r^{4} {\\sin{\\left (\\theta \\right )}}^{2}}} \\boldsymbol{e}_{\\theta } + \\frac{r^{2} \\partial_{r} A^{\\theta } + 2 r A^{\\theta } - \\partial_{\\theta } A^{r} }{\\sqrt{r^{4} {\\sin{\\left (\\theta \\right )}}^{2}}} \\boldsymbol{e}_{\\phi } \\end{equation*}\n",
"\\begin{equation*} \\boldsymbol{\\nabla} \\W B = \\frac{r^{2} \\partial_{r} B^{\\theta \\phi } + 4 r B^{\\theta \\phi } - \\frac{2 B^{r\\phi } }{\\tan{\\left (\\theta \\right )}} - \\partial_{\\theta } B^{r\\phi } + \\frac{\\partial_{\\phi } B^{r\\theta } }{{\\sin{\\left (\\theta \\right )}}^{2}}}{r^{2}} \\boldsymbol{e}_{r}\\wedge \\boldsymbol{e}_{\\theta }\\wedge \\boldsymbol{e}_{\\phi } \\end{equation*}\n",
"\\begin{lstlisting}[language=Python,showspaces=false,showstringspaces=false,backgroundcolor=\\color{gray},frame=single]\n",
"def conformal_representations_of_circles_lines_spheres_and_planes():\n",
Expand Down Expand Up @@ -993,7 +991,7 @@
"\\begin{equation*} B = B^{r\\theta } \\boldsymbol{e}_{r}\\wedge \\boldsymbol{e}_{\\theta } + B^{r\\phi } \\boldsymbol{e}_{r}\\wedge \\boldsymbol{e}_{\\phi } + B^{\\theta \\phi } \\boldsymbol{e}_{\\theta }\\wedge \\boldsymbol{e}_{\\phi } \\end{equation*}\n",
"\\begin{equation*} \\boldsymbol{\\nabla} f = \\partial_{r} f \\boldsymbol{e}_{r} + \\frac{\\partial_{\\theta } f }{r^{2}} \\boldsymbol{e}_{\\theta } + \\frac{\\partial_{\\phi } f }{r^{2} {\\sin{\\left (\\theta \\right )}}^{2}} \\boldsymbol{e}_{\\phi } \\end{equation*}\n",
"\\begin{equation*} \\boldsymbol{\\nabla} \\cdot A = \\frac{A^{\\theta } }{\\tan{\\left (\\theta \\right )}} + \\partial_{\\phi } A^{\\phi } + \\partial_{r} A^{r} + \\partial_{\\theta } A^{\\theta } + \\frac{2 A^{r} }{r} \\end{equation*}\n",
"\\begin{equation*} -I (\\boldsymbol{\\nabla} \\W A) = \\frac{\\sqrt{r^{4} {\\sin{\\left (\\theta \\right )}}^{2}} \\left(\\frac{2 A^{\\phi } }{\\tan{\\left (\\theta \\right )}} + \\partial_{\\theta } A^{\\phi } - \\frac{\\partial_{\\phi } A^{\\theta } }{{\\sin{\\left (\\theta \\right )}}^{2}}\\right)}{r^{2}} \\boldsymbol{e}_{r} + \\frac{- r^{2} {\\sin{\\left (\\theta \\right )}}^{2} \\partial_{r} A^{\\phi } - 2 r A^{\\phi } {\\sin{\\left (\\theta \\right )}}^{2} + \\partial_{\\phi } A^{r} }{\\sqrt{r^{4} {\\sin{\\left (\\theta \\right )}}^{2}}} \\boldsymbol{e}_{\\theta } + \\frac{r^{2} \\partial_{r} A^{\\theta } + 2 r A^{\\theta } - \\partial_{\\theta } A^{r} }{\\sqrt{r^{4} {\\sin{\\left (\\theta \\right )}}^{2}}} \\boldsymbol{e}_{\\phi } \\end{equation*}\n",
"\\begin{equation*} -I (\\boldsymbol{\\nabla} \\W A) = \\frac{\\sqrt{r^{4} {\\sin{\\left (\\theta \\right )}}^{2}} \\cdot \\left(\\frac{2 A^{\\phi } }{\\tan{\\left (\\theta \\right )}} + \\partial_{\\theta } A^{\\phi } - \\frac{\\partial_{\\phi } A^{\\theta } }{{\\sin{\\left (\\theta \\right )}}^{2}}\\right)}{r^{2}} \\boldsymbol{e}_{r} + \\frac{- r^{2} {\\sin{\\left (\\theta \\right )}}^{2} \\partial_{r} A^{\\phi } - 2 r A^{\\phi } {\\sin{\\left (\\theta \\right )}}^{2} + \\partial_{\\phi } A^{r} }{\\sqrt{r^{4} {\\sin{\\left (\\theta \\right )}}^{2}}} \\boldsymbol{e}_{\\theta } + \\frac{r^{2} \\partial_{r} A^{\\theta } + 2 r A^{\\theta } - \\partial_{\\theta } A^{r} }{\\sqrt{r^{4} {\\sin{\\left (\\theta \\right )}}^{2}}} \\boldsymbol{e}_{\\phi } \\end{equation*}\n",
"\\begin{equation*} \\boldsymbol{\\nabla} \\W B = \\frac{r^{2} \\partial_{r} B^{\\theta \\phi } + 4 r B^{\\theta \\phi } - \\frac{2 B^{r\\phi } }{\\tan{\\left (\\theta \\right )}} - \\partial_{\\theta } B^{r\\phi } + \\frac{\\partial_{\\phi } B^{r\\theta } }{{\\sin{\\left (\\theta \\right )}}^{2}}}{r^{2}} \\boldsymbol{e}_{r}\\wedge \\boldsymbol{e}_{\\theta }\\wedge \\boldsymbol{e}_{\\phi } \\end{equation*}\n",
"\\begin{equation*} B = \\bm{B\\gamma_{t}} = - B^{x} \\boldsymbol{\\gamma }_{t}\\wedge \\boldsymbol{\\gamma }_{x} - B^{y} \\boldsymbol{\\gamma }_{t}\\wedge \\boldsymbol{\\gamma }_{y} - B^{z} \\boldsymbol{\\gamma }_{t}\\wedge \\boldsymbol{\\gamma }_{z} \\end{equation*}\n",
"\\begin{equation*} E = \\bm{E\\gamma_{t}} = - E^{x} \\boldsymbol{\\gamma }_{t}\\wedge \\boldsymbol{\\gamma }_{x} - E^{y} \\boldsymbol{\\gamma }_{t}\\wedge \\boldsymbol{\\gamma }_{y} - E^{z} \\boldsymbol{\\gamma }_{t}\\wedge \\boldsymbol{\\gamma }_{z} \\end{equation*}\n",
Expand Down Expand Up @@ -1032,9 +1030,9 @@
"grad^A = 3*\u001b[0;34me_x\u001b[0m^\u001b[0;34me_y\u001b[0m^\u001b[0;34me_z\u001b[0m\n",
"\n",
"f = (x**2 + y**2 + z**2)**(-1.5)\n",
"grad*f = -3.0*x*(x**2 + y**2 + z**2)**(-2.5)*\u001b[0;34me_x\u001b[0m - 3.0*y*(x**2 + y**2 + z**2)**(-2.5)*\u001b[0;34me_y\u001b[0m - 3.0*z*(x**2 + y**2 + z**2)**(-2.5)*\u001b[0;34me_z\u001b[0m\n",
"grad*f = -3.0*x*\u001b[0;34me_x\u001b[0m/(x**2 + y**2 + z**2)**2.5 - 3.0*y*\u001b[0;34me_y\u001b[0m/(x**2 + y**2 + z**2)**2.5 - 3.0*z*\u001b[0;34me_z\u001b[0m/(x**2 + y**2 + z**2)**2.5\n",
"\n",
"B = z*(x**2 + y**2 + z**2)**(-1.5)*\u001b[0;34me_x\u001b[0m^\u001b[0;34me_y\u001b[0m - y*(x**2 + y**2 + z**2)**(-1.5)*\u001b[0;34me_x\u001b[0m^\u001b[0;34me_z\u001b[0m + x*(x**2 + y**2 + z**2)**(-1.5)*\u001b[0;34me_y\u001b[0m^\u001b[0;34me_z\u001b[0m\n",
"B = z*\u001b[0;34me_x\u001b[0m^\u001b[0;34me_y\u001b[0m/(x**2 + y**2 + z**2)**1.5 - y*\u001b[0;34me_x\u001b[0m^\u001b[0;34me_z\u001b[0m/(x**2 + y**2 + z**2)**1.5 + x*\u001b[0;34me_y\u001b[0m^\u001b[0;34me_z\u001b[0m/(x**2 + y**2 + z**2)**1.5\n",
"\n",
"grad^B = 0\n",
"0\n"
Expand All @@ -1058,9 +1056,7 @@
{
"cell_type": "code",
"execution_count": 11,
"metadata": {
"scrolled": false
},
"metadata": {},
"outputs": [
{
"name": "stdout",
Expand Down Expand Up @@ -1222,8 +1218,8 @@
"s<v = s*v__x*e_x + s*v__y*e_y\n",
"s>v = 0\n",
"\n",
"v*grad = v__x*D{x} + v__y*D{y} + e_x^e_y*(-((e_x.e_y)*v__x + (e_y.e_y)*v__y)/((e_x.e_x)*(e_y.e_y) - (e_x.e_y)**2)*D{x} + ((e_x.e_x)*v__x + (e_x.e_y)*v__y)/((e_x.e_x)*(e_y.e_y) - (e_x.e_y)**2)*D{y})\n",
"v^grad = e_x^e_y*(-((e_x.e_y)*v__x + (e_y.e_y)*v__y)/((e_x.e_x)*(e_y.e_y) - (e_x.e_y)**2)*D{x} + ((e_x.e_x)*v__x + (e_x.e_y)*v__y)/((e_x.e_x)*(e_y.e_y) - (e_x.e_y)**2)*D{y})\n",
"v*grad = v__x*D{x} + v__y*D{y} + e_x^e_y*((-(e_x.e_y)*v__x - (e_y.e_y)*v__y)/((e_x.e_x)*(e_y.e_y) - (e_x.e_y)**2)*D{x} + ((e_x.e_x)*v__x + (e_x.e_y)*v__y)/((e_x.e_x)*(e_y.e_y) - (e_x.e_y)**2)*D{y})\n",
"v^grad = e_x^e_y*((-(e_x.e_y)*v__x - (e_y.e_y)*v__y)/((e_x.e_x)*(e_y.e_y) - (e_x.e_y)**2)*D{x} + ((e_x.e_x)*v__x + (e_x.e_y)*v__y)/((e_x.e_x)*(e_y.e_y) - (e_x.e_y)**2)*D{y})\n",
"v|grad = v__x*D{x} + v__y*D{y}\n",
"v<grad = v__x*D{x} + v__y*D{y}\n",
"v>grad = v__x*D{x} + v__y*D{y}\n",
Expand Down Expand Up @@ -1589,7 +1585,7 @@
"\\begin{equation*} B = B^{r\\theta } \\boldsymbol{e}_{r}\\wedge \\boldsymbol{e}_{\\theta } + B^{r\\phi } \\boldsymbol{e}_{r}\\wedge \\boldsymbol{e}_{\\phi } + B^{\\theta \\phi } \\boldsymbol{e}_{\\theta }\\wedge \\boldsymbol{e}_{\\phi } \\end{equation*}\n",
"\\begin{equation*} \\boldsymbol{\\nabla} f = \\partial_{r} f \\boldsymbol{e}_{r} + \\frac{\\partial_{\\theta } f }{r^{2}} \\boldsymbol{e}_{\\theta } + \\frac{\\partial_{\\phi } f }{r^{2} {\\sin{\\left (\\theta \\right )}}^{2}} \\boldsymbol{e}_{\\phi } \\end{equation*}\n",
"\\begin{equation*} \\boldsymbol{\\nabla} \\cdot A = \\frac{A^{\\theta } }{\\tan{\\left (\\theta \\right )}} + \\partial_{\\phi } A^{\\phi } + \\partial_{r} A^{r} + \\partial_{\\theta } A^{\\theta } + \\frac{2 A^{r} }{r} \\end{equation*}\n",
"\\begin{equation*} -I (\\boldsymbol{\\nabla} \\W A) = \\frac{\\sqrt{r^{4} {\\sin{\\left (\\theta \\right )}}^{2}} \\left(\\frac{2 A^{\\phi } }{\\tan{\\left (\\theta \\right )}} + \\partial_{\\theta } A^{\\phi } - \\frac{\\partial_{\\phi } A^{\\theta } }{{\\sin{\\left (\\theta \\right )}}^{2}}\\right)}{r^{2}} \\boldsymbol{e}_{r} + \\frac{- r^{2} {\\sin{\\left (\\theta \\right )}}^{2} \\partial_{r} A^{\\phi } - 2 r A^{\\phi } {\\sin{\\left (\\theta \\right )}}^{2} + \\partial_{\\phi } A^{r} }{\\sqrt{r^{4} {\\sin{\\left (\\theta \\right )}}^{2}}} \\boldsymbol{e}_{\\theta } + \\frac{r^{2} \\partial_{r} A^{\\theta } + 2 r A^{\\theta } - \\partial_{\\theta } A^{r} }{\\sqrt{r^{4} {\\sin{\\left (\\theta \\right )}}^{2}}} \\boldsymbol{e}_{\\phi } \\end{equation*}\n",
"\\begin{equation*} -I (\\boldsymbol{\\nabla} \\W A) = \\frac{\\sqrt{r^{4} {\\sin{\\left (\\theta \\right )}}^{2}} \\cdot \\left(\\frac{2 A^{\\phi } }{\\tan{\\left (\\theta \\right )}} + \\partial_{\\theta } A^{\\phi } - \\frac{\\partial_{\\phi } A^{\\theta } }{{\\sin{\\left (\\theta \\right )}}^{2}}\\right)}{r^{2}} \\boldsymbol{e}_{r} + \\frac{- r^{2} {\\sin{\\left (\\theta \\right )}}^{2} \\partial_{r} A^{\\phi } - 2 r A^{\\phi } {\\sin{\\left (\\theta \\right )}}^{2} + \\partial_{\\phi } A^{r} }{\\sqrt{r^{4} {\\sin{\\left (\\theta \\right )}}^{2}}} \\boldsymbol{e}_{\\theta } + \\frac{r^{2} \\partial_{r} A^{\\theta } + 2 r A^{\\theta } - \\partial_{\\theta } A^{r} }{\\sqrt{r^{4} {\\sin{\\left (\\theta \\right )}}^{2}}} \\boldsymbol{e}_{\\phi } \\end{equation*}\n",
"\\begin{equation*} \\boldsymbol{\\nabla} \\W B = \\frac{r^{2} \\partial_{r} B^{\\theta \\phi } + 4 r B^{\\theta \\phi } - \\frac{2 B^{r\\phi } }{\\tan{\\left (\\theta \\right )}} - \\partial_{\\theta } B^{r\\phi } + \\frac{\\partial_{\\phi } B^{r\\theta } }{{\\sin{\\left (\\theta \\right )}}^{2}}}{r^{2}} \\boldsymbol{e}_{r}\\wedge \\boldsymbol{e}_{\\theta }\\wedge \\boldsymbol{e}_{\\phi } \\end{equation*}\n",
"\\end{document}\n"
]
Expand All @@ -1605,9 +1601,7 @@
{
"cell_type": "code",
"execution_count": 16,
"metadata": {
"scrolled": false
},
"metadata": {},
"outputs": [
{
"name": "stdout",
Expand Down Expand Up @@ -1803,7 +1797,7 @@
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
Expand All @@ -1817,9 +1811,9 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.0"
"version": "3.11.8"
}
},
"nbformat": 4,
"nbformat_minor": 2
"nbformat_minor": 4
}
27 changes: 17 additions & 10 deletions examples/ipython/Terminal.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -4,17 +4,24 @@
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/Users/utensil/.pyenv/versions/3.11.8/lib/python3.11/site-packages/IPython/core/magics/osm.py:417: UserWarning: This is now an optional IPython functionality, setting dhist requires you to install the `pickleshare` library.\n",
" self.shell.db['dhist'] = compress_dhist(dhist)[-100:]\n"
]
}
],
"source": [
"%cd -q ../Terminal"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"scrolled": false
},
"metadata": {},
"outputs": [
{
"name": "stdout",
Expand Down Expand Up @@ -50,9 +57,9 @@
"[(\u001b[0;34me_x\u001b[0m.\u001b[0;34me_y\u001b[0m), (\u001b[0;34me_y\u001b[0m.\u001b[0;34me_y\u001b[0m)]])\n",
"X = X__x*\u001b[0;34me_x\u001b[0m + X__y*\u001b[0;34me_y\u001b[0m\n",
"A = A + A__xy*\u001b[0;34me_x\u001b[0m^\u001b[0;34me_y\u001b[0m\n",
"X|A = -A__xy*((\u001b[0;34me_x\u001b[0m.\u001b[0;34me_y\u001b[0m)*X__x + (\u001b[0;34me_y\u001b[0m.\u001b[0;34me_y\u001b[0m)*X__y)*\u001b[0;34me_x\u001b[0m + A__xy*((\u001b[0;34me_x\u001b[0m.\u001b[0;34me_x\u001b[0m)*X__x + (\u001b[0;34me_x\u001b[0m.\u001b[0;34me_y\u001b[0m)*X__y)*\u001b[0;34me_y\u001b[0m\n",
"X<A = -A__xy*((\u001b[0;34me_x\u001b[0m.\u001b[0;34me_y\u001b[0m)*X__x + (\u001b[0;34me_y\u001b[0m.\u001b[0;34me_y\u001b[0m)*X__y)*\u001b[0;34me_x\u001b[0m + A__xy*((\u001b[0;34me_x\u001b[0m.\u001b[0;34me_x\u001b[0m)*X__x + (\u001b[0;34me_x\u001b[0m.\u001b[0;34me_y\u001b[0m)*X__y)*\u001b[0;34me_y\u001b[0m\n",
"A>X = A__xy*((\u001b[0;34me_x\u001b[0m.\u001b[0;34me_y\u001b[0m)*X__x + (\u001b[0;34me_y\u001b[0m.\u001b[0;34me_y\u001b[0m)*X__y)*\u001b[0;34me_x\u001b[0m - A__xy*((\u001b[0;34me_x\u001b[0m.\u001b[0;34me_x\u001b[0m)*X__x + (\u001b[0;34me_x\u001b[0m.\u001b[0;34me_y\u001b[0m)*X__y)*\u001b[0;34me_y\u001b[0m\n",
"X|A = A__xy*(-(\u001b[0;34me_x\u001b[0m.\u001b[0;34me_y\u001b[0m)*X__x - (\u001b[0;34me_y\u001b[0m.\u001b[0;34me_y\u001b[0m)*X__y)*\u001b[0;34me_x\u001b[0m + A__xy*((\u001b[0;34me_x\u001b[0m.\u001b[0;34me_x\u001b[0m)*X__x + (\u001b[0;34me_x\u001b[0m.\u001b[0;34me_y\u001b[0m)*X__y)*\u001b[0;34me_y\u001b[0m\n",
"X<A = A__xy*(-(\u001b[0;34me_x\u001b[0m.\u001b[0;34me_y\u001b[0m)*X__x - (\u001b[0;34me_y\u001b[0m.\u001b[0;34me_y\u001b[0m)*X__y)*\u001b[0;34me_x\u001b[0m + A__xy*((\u001b[0;34me_x\u001b[0m.\u001b[0;34me_x\u001b[0m)*X__x + (\u001b[0;34me_x\u001b[0m.\u001b[0;34me_y\u001b[0m)*X__y)*\u001b[0;34me_y\u001b[0m\n",
"A>X = A__xy*((\u001b[0;34me_x\u001b[0m.\u001b[0;34me_y\u001b[0m)*X__x + (\u001b[0;34me_y\u001b[0m.\u001b[0;34me_y\u001b[0m)*X__y)*\u001b[0;34me_x\u001b[0m + A__xy*(-(\u001b[0;34me_x\u001b[0m.\u001b[0;34me_x\u001b[0m)*X__x - (\u001b[0;34me_x\u001b[0m.\u001b[0;34me_y\u001b[0m)*X__y)*\u001b[0;34me_y\u001b[0m\n",
"g_{ii} =\n",
" Matrix([\n",
"[1, 0],\n",
Expand Down Expand Up @@ -574,7 +581,7 @@
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
Expand All @@ -588,9 +595,9 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.0"
"version": "3.11.8"
}
},
"nbformat": 4,
"nbformat_minor": 2
"nbformat_minor": 4
}
Loading

0 comments on commit 2ca0c66

Please sign in to comment.