Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Enable ruff formatting of docstrings #430

Merged
merged 1 commit into from
Nov 22, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
17 changes: 6 additions & 11 deletions causalpy/data/simulate_data.py
Original file line number Diff line number Diff line change
Expand Up @@ -71,9 +71,7 @@ def generate_synthetic_control_data(
Example
--------
>>> from causalpy.data.simulate_data import generate_synthetic_control_data
>>> df, weightings_true = generate_synthetic_control_data(
... treatment_time=70
... )
>>> df, weightings_true = generate_synthetic_control_data(treatment_time=70)
"""

# 1. Generate non-treated variables
Expand Down Expand Up @@ -267,8 +265,9 @@ def generate_regression_discontinuity_data(
>>> import pathlib
>>> from causalpy.data.simulate_data import generate_regression_discontinuity_data
>>> df = generate_regression_discontinuity_data(true_treatment_threshold=0.5)
>>> df.to_csv(pathlib.Path.cwd() / 'regression_discontinuity.csv',
... index=False) # doctest: +SKIP
>>> df.to_csv(
... pathlib.Path.cwd() / "regression_discontinuity.csv", index=False
... ) # doctest: +SKIP
"""

def is_treated(x):
Expand Down Expand Up @@ -298,13 +297,9 @@ def generate_ancova_data(
>>> import pathlib
>>> from causalpy.data.simulate_data import generate_ancova_data
>>> df = generate_ancova_data(
... N=200,
... pre_treatment_means=np.array([10, 12]),
... treatment_effect=2,
... sigma=1
... N=200, pre_treatment_means=np.array([10, 12]), treatment_effect=2, sigma=1
... )
>>> df.to_csv(pathlib.Path.cwd() / 'ancova_data.csv',
... index=False) # doctest: +SKIP
>>> df.to_csv(pathlib.Path.cwd() / "ancova_data.csv", index=False) # doctest: +SKIP
"""
group = np.random.choice(2, size=N)
pre = np.random.normal(loc=pre_treatment_means[group])
Expand Down
4 changes: 2 additions & 2 deletions causalpy/experiments/diff_in_diff.py
Original file line number Diff line number Diff line change
Expand Up @@ -70,8 +70,8 @@ class DifferenceInDifferences(BaseExperiment):
... "random_seed": seed,
... "progressbar": False,
... }
... )
... )
... ),
... )
"""

supports_ols = True
Expand Down
12 changes: 6 additions & 6 deletions causalpy/experiments/instrumental_variable.py
Original file line number Diff line number Diff line change
Expand Up @@ -74,17 +74,17 @@ class InstrumentalVariable(BaseExperiment):
... "cores": 4,
... "target_accept": 0.95,
... "progressbar": False,
... }
... }
>>> instruments_formula = "X ~ 1 + Z"
>>> formula = "y ~ 1 + X"
>>> instruments_data = test_data[["X", "Z"]]
>>> data = test_data[["y", "X"]]
>>> iv = cp.InstrumentalVariable(
... instruments_data=instruments_data,
... data=data,
... instruments_formula=instruments_formula,
... formula=formula,
... model=InstrumentalVariableRegression(sample_kwargs=sample_kwargs),
... instruments_data=instruments_data,
... data=data,
... instruments_formula=instruments_formula,
... formula=formula,
... model=InstrumentalVariableRegression(sample_kwargs=sample_kwargs),
... )
"""

Expand Down
2 changes: 1 addition & 1 deletion causalpy/experiments/inverse_propensity_weighting.py
Original file line number Diff line number Diff line change
Expand Up @@ -56,7 +56,7 @@ class InversePropensityWeighting(BaseExperiment):
>>> result = cp.InversePropensityWeighting(
... df,
... formula="trt ~ 1 + age + race",
... outcome_variable ="outcome",
... outcome_variable="outcome",
... weighting_scheme="robust",
... model=cp.pymc_models.PropensityScore(
... sample_kwargs={
Expand Down
2 changes: 1 addition & 1 deletion causalpy/experiments/prepostfit.py
Original file line number Diff line number Diff line change
Expand Up @@ -337,7 +337,7 @@ class InterruptedTimeSeries(PrePostFit):
... "random_seed": seed,
... "progressbar": False,
... }
... )
... ),
... )
"""

Expand Down
4 changes: 2 additions & 2 deletions causalpy/experiments/prepostnegd.py
Original file line number Diff line number Diff line change
Expand Up @@ -69,9 +69,9 @@ class PrePostNEGD(BaseExperiment):
... "random_seed": seed,
... "progressbar": False,
... }
... )
... ),
... )
>>> result.summary(round_to=1) # doctest: +NUMBER
>>> result.summary(round_to=1) # doctest: +NUMBER
==================Pretest/posttest Nonequivalent Group Design===================
Formula: post ~ 1 + C(group) + pre
<BLANKLINE>
Expand Down
44 changes: 26 additions & 18 deletions causalpy/pymc_models.py
Original file line number Diff line number Diff line change
Expand Up @@ -50,20 +50,20 @@ class PyMCModel(pm.Model):
>>> X = rng.normal(loc=0, scale=1, size=(20, 2))
>>> y = rng.normal(loc=0, scale=1, size=(20,))
>>> model = MyToyModel(
... sample_kwargs={
... "chains": 2,
... "draws": 2000,
... "progressbar": False,
... "random_seed": 42,
... }
... sample_kwargs={
... "chains": 2,
... "draws": 2000,
... "progressbar": False,
... "random_seed": 42,
... }
... )
>>> model.fit(X, y)
Inference data...
>>> model.score(X, y) # doctest: +ELLIPSIS
r2 ...
r2_std ...
dtype: float64
>>> X_new = rng.normal(loc=0, scale=1, size=(20,2))
>>> X_new = rng.normal(loc=0, scale=1, size=(20, 2))
>>> model.predict(X_new)
Inference data...
"""
Expand Down Expand Up @@ -286,11 +286,11 @@ class InstrumentalVariableRegression(PyMCModel):
>>> ## Ensure the endogeneity of the the treatment variable
>>> X = -1 + 4 * Z + e2 + 2 * e1
>>> y = 2 + 3 * X + 3 * e1
>>> t = X.reshape(10,1)
>>> y = y.reshape(10,1)
>>> Z = np.asarray([[1, Z[i]] for i in range(0,10)])
>>> X = np.asarray([[1, X[i]] for i in range(0,10)])
>>> COORDS = {'instruments': ['Intercept', 'Z'], 'covariates': ['Intercept', 'X']}
>>> t = X.reshape(10, 1)
>>> y = y.reshape(10, 1)
>>> Z = np.asarray([[1, Z[i]] for i in range(0, 10)])
>>> X = np.asarray([[1, X[i]] for i in range(0, 10)])
>>> COORDS = {"instruments": ["Intercept", "Z"], "covariates": ["Intercept", "X"]}
>>> sample_kwargs = {
... "tune": 5,
... "draws": 10,
Expand All @@ -300,12 +300,20 @@ class InstrumentalVariableRegression(PyMCModel):
... "progressbar": False,
... }
>>> iv_reg = InstrumentalVariableRegression(sample_kwargs=sample_kwargs)
>>> iv_reg.fit(X, Z,y, t, COORDS, {
... "mus": [[-2,4], [0.5, 3]],
... "sigmas": [1, 1],
... "eta": 2,
... "lkj_sd": 1,
... }, None)
>>> iv_reg.fit(
... X,
... Z,
... y,
... t,
... COORDS,
... {
... "mus": [[-2, 4], [0.5, 3]],
... "sigmas": [1, 1],
... "eta": 2,
... "lkj_sd": 1,
... },
... None,
... )
Inference data...
"""

Expand Down
3 changes: 3 additions & 0 deletions pyproject.toml
Original file line number Diff line number Diff line change
Expand Up @@ -118,6 +118,9 @@ omit-covered-files = false
generate-badge = "docs/source/_static/"
badge-format = "svg"

[tool.ruff.format]
docstring-code-format = true

[tool.ruff.lint]
extend-select = [
"I", # isort
Expand Down
Loading