Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Universal Strict Lifting (Hypergraph to Combinatorial) #47

Open
wants to merge 21 commits into
base: main
Choose a base branch
from

Conversation

alvarolmartinez
Copy link

In this PR we introduce a lifting from hypergraphs to combinatorial complexes which is universal with respect to a property (strictness) in the sense of category theory.

The Universal Strict Lifting does not introduce extra cells: every cell in the lifted CC corresponds to a hyperedge in the original hypergraph. Combinatorial complexes carry more information than hypergraphs, in the form of a rank function taking nonnegative values on each cell, satisfying a topological requirement (see [1]). The Universal Strict Lifting provides such a rank function in a deterministic manner.

Universality

Denote the categories*
$$\mathrm{Hyper} := (\text{hypergraphs}, \text{hypergraph homomorphisms})$$
$$\mathrm{CC}:= (\text{Combinatorial complexes}, \text{CC-homomorphisms})$$

Let $\mathrm{CC^{\mathrm{strict}}}$ consist of the (full) subcategory of $\mathrm{CC}$ consisting of combinatorial complexes where the rank condition is strict, that is:

$$\text{If cells } x,y \text{ satisfy } x\subseteq y\text{ then }\mathrm{rk}(x)<\mathrm{rk}(y)$$

We note that the strict category naturally contains the category of cell and simplicial complexes, where the dimensions of the cells provide the ranks.

The simplest nontrivial example is the comparison of a square (2-cell) and a tetrahedron (3-cell), both of which have the same number of nodes. See the tutorial for details on the implementation.

*: A hypergraph homomorphism is a mapping of the nodes that sends hyperedges to hyperedges and respects hyperedge inclusions. See [1] for definitions about CCs.

Universal property of the Universal Strict Lifting

Theorem:
Let
$$\mathcal{L}: \mathrm{Hyper} \rightarrow \mathrm{CC^{\mathrm{strict}}} \text{ be \textbf{any} lifting which respects homomorphisms}$$

$$\mathcal{U}: \mathrm{Hyper} \rightarrow \mathrm{CC^{\mathrm{strict}}} \text{ be the Universal Strict lifting}$$

Then there exists a homomorphism-preserving $\mathcal{F} : \mathrm{CC^{\mathrm{strict}}} \rightarrow \mathrm{CC^{\mathrm{strict}}}$ such that $\mathcal{L} = \mathcal{F} \circ \mathcal{U}$.

In other words, we can express any lifting from hypergraphs to strict CCs as a composition of our universal lifting with something else. This implies that $\mathcal{U}$ introduces the strictly necessary information needed to obtain a combinatorial complex in $\mathrm{CC}^{\mathrm{strict}}$.

Copy link

Check out this pull request on  ReviewNB

See visual diffs & provide feedback on Jupyter Notebooks.


Powered by ReviewNB

@gbg141 gbg141 added award-category-2 Lifting to Combinatorial, Hypergraph or Graph Domain award-category-4 Connectivity-based Lifting labels Jul 10, 2024
@gbg141
Copy link
Member

gbg141 commented Jul 10, 2024

Hello @alvarolmartinez! Thank you for your submission. As we near the end of the challenge, I am collecting participant info for the purpose of selecting and announcing winners. Please email me (or have one member of your team email me) at guillermo_bernardez@ucsb.edu so I can share access to the voting form. In your email, please include:

Before July 12, make sure that your submission respects all Submission Requirements laid out on the challenge page. Any submission that fails to meet this criteria will be automatically disqualified.

@gbg141 gbg141 added Winner Awarded submission and removed challenge-icml-2024 labels Oct 31, 2024
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
award-category-2 Lifting to Combinatorial, Hypergraph or Graph Domain award-category-4 Connectivity-based Lifting Winner Awarded submission
Projects
None yet
Development

Successfully merging this pull request may close these issues.

2 participants