Skip to content

TorchBench V3 nightly (A100) #683

TorchBench V3 nightly (A100)

TorchBench V3 nightly (A100) #683

Workflow file for this run

name: TorchBench V3 nightly (A100)
on:
workflow_dispatch:
schedule:
- cron: '00 18 * * *' # run at 6:00 PM UTC, K8s containers will roll out at 12PM EST
jobs:
run-benchmark:
environment: docker-s3-upload
env:
BASE_CONDA_ENV: "torchbench"
CONDA_ENV: "torchbench-v3-nightly"
PLATFORM_NAME: "gcp_a100"
SETUP_SCRIPT: "/workspace/setup_instance.sh"
TORCHBENCH_USERBENCHMARK_SCRIBE_GRAPHQL_ACCESS_TOKEN: ${{ secrets.TORCHBENCH_USERBENCHMARK_SCRIBE_GRAPHQL_ACCESS_TOKEN }}
AWS_ACCESS_KEY_ID: ${{ secrets.AWS_ACCESS_KEY_ID }}
AWS_SECRET_ACCESS_KEY: ${{ secrets.AWS_SECRET_ACCESS_KEY }}
IS_GHA: 1
BUILD_ENVIRONMENT: benchmark-nightly
if: ${{ github.repository_owner == 'pytorch' }}
runs-on: [a100-runner]
steps:
- name: Checkout TorchBench v3.0 branch
uses: actions/checkout@v3
with:
ref: v3.0
path: benchmark
- name: Tune Nvidia GPU
run: |
sudo nvidia-smi -pm 1
sudo nvidia-smi -ac 1215,1410
nvidia-smi
- name: Clone and setup conda env
run: |
CONDA_ENV=${BASE_CONDA_ENV} . "${SETUP_SCRIPT}"
conda create --name "${CONDA_ENV}" --clone "${BASE_CONDA_ENV}"
- name: Install TorchBench
run: |
set -x
. "${SETUP_SCRIPT}"
pushd benchmark
python install.py
- name: Run the torch-nightly userbenchmark
run: |
. "${SETUP_SCRIPT}"
# remove old results
if [ -d benchmark-output ]; then rm -Rf benchmark-output; fi
pushd benchmark
if [ -d .userbenchmark ]; then rm -Rf .userbenchmark; fi
python run_benchmark.py torch-nightly -c v3-cuda-tests.yaml
cp -r ./.userbenchmark/torch-nightly ../benchmark-output
- name: Detect potential regressions
continue-on-error: true
run: |
. "${SETUP_SCRIPT}"
pushd benchmark
RESULTS=($(find ${PWD}/../benchmark-output -name "metrics-*.json" -maxdepth 2 | sort -r))
# TODO: the following assumes only one metrics-*.json is found. It will keep
# overwriting gh-issue.md if multiple are found.
for r in ${RESULTS[@]}; do
python regression_detector.py --platform "${PLATFORM_NAME}" --treatment "${r}" --owner @xuzhao9 \
--gh-issue-path gh-issue.md --errors-path errors.txt
done
rm -r ../benchmark-output || true
cp -r ./.userbenchmark/torch-nightly ../benchmark-output
- name: Copy artifact and upload to scribe and Amazon S3
run: |
. "${SETUP_SCRIPT}"
pushd benchmark
LATEST_RESULT=$(find ../benchmark-output/ -name "metrics-*.json" | sort -r | head -1)
echo "Benchmark result file: ${LATEST_RESULT}"
# Upload the result json to Scribe
python ./scripts/userbenchmark/upload_scribe.py --userbenchmark_json "${LATEST_RESULT}" --userbenchmark_platform "${PLATFORM_NAME}"
# Upload the result json to Amazon S3
python ./scripts/userbenchmark/upload_s3.py --upload-file "${LATEST_RESULT}" --userbenchmark_platform "${PLATFORM_NAME}"
- name: Copy regression results to Amazon S3 and kick off bisection
if: env.TORCHBENCH_REGRESSION_DETECTED
run: |
. "${SETUP_SCRIPT}"
pushd benchmark
LATEST_REGRESSION_RESULT=$(find ../benchmark-output/ -name "regression-*.yaml" | sort -r | head -1)
# Upload the regression json to Amazon S3
python ./scripts/userbenchmark/upload_s3.py --upload-file "${LATEST_REGRESSION_RESULT}" --userbenchmark_platform "${PLATFORM_NAME}"
# Get the workflow ID from
# https://api.github.com/repos/pytorch/benchmark/actions/workflows
# And dispatch the bisection workflow
curl -u xuzhao9:${{ secrets.TORCHBENCH_ACCESS_TOKEN }} \
-X POST \
-H "Accept: application/vnd.github.v3+json" \
https://api.github.com/repos/pytorch/benchmark/actions/workflows/57994037/dispatches \
-d '{"ref": "main", "inputs": {"regression_date": "${{ env.TORCHBENCH_REGRESSION_DETECTED }}" } }'
- name: Upload result to GH Actions Artifact
uses: actions/upload-artifact@v3
with:
name: TorchBench V3 result
path: benchmark-output/
- name: Clean up Conda env
if: always()
run: |
. "${SETUP_SCRIPT}"
conda deactivate && conda deactivate
conda remove -n "${CONDA_ENV}" --all