Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[WIP] [DO NOT MERGE] Add efficientnet #236

Draft
wants to merge 1 commit into
base: master
Choose a base branch
from
Draft
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Binary file added images/efficientnet1.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
110 changes: 110 additions & 0 deletions pytorch_vision_efficientnet.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,110 @@
---
layout: hub_detail
background-class: hub-background
body-class: hub
title: EfficientNet
summary: Memory and Performance Efficient Networks with 8 configurations.
category: researchers
image: efficientnet1.png
author: Pytorch Team
tags: [vision, scriptable]
github-link: https://github.com/pytorch/vision/blob/main/torchvision/models/efficientnet.py
github-id: pytorch/vision
featured_image_1: efficientnet1.png
featured_image_2: no-image
accelerator: cuda-optional
order: 10
---

```python
import torch
model = torch.hub.load('pytorch/vision:v0.11.0', 'efficientnet_b0', pretrained=True)
# or any of these variants
# model = torch.hub.load('pytorch/vision:v0.11.0', 'efficientnet_b1', pretrained=True)
# model = torch.hub.load('pytorch/vision:v0.11.0', 'efficientnet_b2', pretrained=True)
# model = torch.hub.load('pytorch/vision:v0.11.0', 'efficientnet_b3', pretrained=True)
# model = torch.hub.load('pytorch/vision:v0.11.0', 'efficientnet_b4', pretrained=True)
# model = torch.hub.load('pytorch/vision:v0.11.0', 'efficientnet_b5', pretrained=True)
# model = torch.hub.load('pytorch/vision:v0.11.0', 'efficientnet_b6', pretrained=True)
# model = torch.hub.load('pytorch/vision:v0.11.0', 'efficientnet_b7', pretrained=True)
model.eval()
```

All pre-trained models expect input images normalized in the same way,
i.e. mini-batches of 3-channel RGB images of shape `(3 x H x W)`, where `H` and `W` are expected to be at least `224`.
The images have to be loaded in to a range of `[0, 1]` and then normalized using `mean = [0.485, 0.456, 0.406]`
and `std = [0.229, 0.224, 0.225]`.

Here's a sample execution.

```python
# Download an example image from the pytorch website
import urllib
url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg")
try: urllib.URLopener().retrieve(url, filename)
except: urllib.request.urlretrieve(url, filename)
```

```python
# sample execution (requires torchvision)
from PIL import Image
from torchvision import transforms
input_image = Image.open(filename)
preprocess = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
input_tensor = preprocess(input_image)
input_batch = input_tensor.unsqueeze(0) # create a mini-batch as expected by the model

# move the input and model to GPU for speed if available
if torch.cuda.is_available():
input_batch = input_batch.to('cuda')
model.to('cuda')

with torch.no_grad():
output = model(input_batch)
# Tensor of shape 1000, with confidence scores over Imagenet's 1000 classes
print(output[0])
# The output has unnormalized scores. To get probabilities, you can run a softmax on it.
probabilities = torch.nn.functional.softmax(output[0], dim=0)
print(probabilities)
```

```
# Download ImageNet labels
!wget https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt
```

```
# Read the categories
with open("imagenet_classes.txt", "r") as f:
categories = [s.strip() for s in f.readlines()]
# Show top categories per image
top5_prob, top5_catid = torch.topk(probabilities, 5)
for i in range(top5_prob.size(0)):
print(categories[top5_catid[i]], top5_prob[i].item())
```

### Model Description

The EfficientNet architecture description.

| Model structure | Top-1 error | Top-5 error |
| ------------------ | ----------- | ----------- |
| efficientnet_b0 | 22.30 | 6.46 |
| efficientnet_b1 | 21.35 | 5.82 |
| efficientnet_b2 | 19.39 | 4.69 |
| efficientnet_b3 | 17.99 | 3.94 |
| efficientnet_b4 | 16.61 | 3.40 |
| efficientnet_b5 | 16.55 | 3.37 |
| efficientnet_b6 | 15.99 | 3.08 |
| efficientnet_b7 | 15.87 | 3.09 |


### References

- [EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks](https://arxiv.org/abs/1905.11946)
- [EfficientNet Blog by Google Research](https://ai.googleblog.com/2019/05/efficientnet-improving-accuracy-and.html)