Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add the example of super_resolution #2885

Merged
merged 19 commits into from
Mar 21, 2023
Merged
Show file tree
Hide file tree
Changes from 2 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion examples/super_resolution/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -30,7 +30,7 @@ This example trains a super-resolution network on the [Cifar10 dataset](https://

### Train

`python main.py --upscale_factor 3 --batchSize 4 --testBatchSize 100 --nEpochs 30 --lr 0.001`
`python main.py --upscale_factor 3 --batch_size 4 --test_batch_size 100 --n_epochs 30 --lr 0.001`

### Super Resolve

Expand Down
83 changes: 59 additions & 24 deletions examples/super_resolution/main.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,19 +4,19 @@
import torch.nn as nn
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms
from model import Net
from torch.utils.data import DataLoader
from torchvision.transforms import CenterCrop, Compose, Resize, ToTensor

from ignite.engine import Engine, Events
from ignite.metrics import PSNR

# Training settings
parser = argparse.ArgumentParser(description="PyTorch Super Res Example")
parser.add_argument("--upscale_factor", type=int, required=True, help="super resolution upscale factor")
parser.add_argument("--batchSize", type=int, default=64, help="training batch size")
parser.add_argument("--testBatchSize", type=int, default=10, help="testing batch size")
parser.add_argument("--nEpochs", type=int, default=2, help="number of epochs to train for")
parser.add_argument("--batch_size", type=int, default=64, help="training batch size")
parser.add_argument("--test_batch_size", type=int, default=10, help="testing batch size")
parser.add_argument("--n_epochs", type=int, default=2, help="number of epochs to train for")
parser.add_argument("--lr", type=float, default=0.01, help="Learning Rate. Default=0.01")
parser.add_argument("--cuda", action="store_true", help="use cuda?")
parser.add_argument("--mps", action="store_true", default=False, help="enables macOS GPU training")
Expand Down Expand Up @@ -45,32 +45,71 @@


class SRDataset(torch.utils.data.Dataset):
def __init__(self, dataset, scale_factor):
def __init__(self, dataset, scale_factor, input_transform=None, target_transform=None):
self.dataset = dataset
self.transform = transforms.Resize(
(len(dataset[0][0][0]) * scale_factor, len(dataset[0][0][0][0]) * scale_factor)
)
self.input_transform = input_transform
self.target_transform = target_transform

def __getitem__(self, index):
lr_image, _ = self.dataset[index]
hr_image = self.transform(lr_image)
image, _ = self.dataset[index]
img = image.convert("YCbCr")
lr_image, _, _ = img.split()

hr_image = lr_image.copy()
if self.input_transform:
lr_image = self.input_transform(lr_image)
if self.target_transform:
hr_image = self.target_transform(hr_image)
return lr_image, hr_image

def __len__(self):
return len(self.dataset)


transform = transforms.Compose([transforms.ToTensor()])
def calculate_valid_crop_size(crop_size, upscale_factor):
return crop_size - (crop_size % upscale_factor)


def input_transform(crop_size, upscale_factor):
return Compose(
[
CenterCrop(crop_size),
Resize(crop_size // upscale_factor),
ToTensor(),
vfdev-5 marked this conversation as resolved.
Show resolved Hide resolved
]
)


def target_transform(crop_size):
return Compose(
[
CenterCrop(crop_size),
ToTensor(),
]
)


crop_size = calculate_valid_crop_size(256, opt.upscale_factor)

trainset = torchvision.datasets.CIFAR10(root="./data", train=True, download=True, transform=transform)
testset = torchvision.datasets.CIFAR10(root="./data", train=False, download=True, transform=transform)
trainset = torchvision.datasets.Caltech101(root="./data", download=True)
testset = torchvision.datasets.Caltech101(root="./data", download=False)

trainset_sr = SRDataset(trainset, scale_factor=opt.upscale_factor)
testset_sr = SRDataset(testset, scale_factor=opt.upscale_factor)
trainset_sr = SRDataset(
trainset,
scale_factor=opt.upscale_factor,
input_transform=input_transform(crop_size, opt.upscale_factor),
target_transform=target_transform(crop_size),
)
testset_sr = SRDataset(
testset,
scale_factor=opt.upscale_factor,
input_transform=input_transform(crop_size, opt.upscale_factor),
target_transform=target_transform(crop_size),
)

training_data_loader = DataLoader(dataset=trainset_sr, num_workers=opt.threads, batch_size=opt.batchSize, shuffle=True)
training_data_loader = DataLoader(dataset=trainset_sr, num_workers=opt.threads, batch_size=opt.batch_size, shuffle=True)
testing_data_loader = DataLoader(
dataset=testset_sr, num_workers=opt.threads, batch_size=opt.testBatchSize, shuffle=False
dataset=testset_sr, num_workers=opt.threads, batch_size=opt.test_batch_size, shuffle=False
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Suggested change
dataset=testset_sr, num_workers=opt.threads, batch_size=opt.test_batch_size, shuffle=False
dataset=testset_sr, num_workers=opt.threads, batch_size=opt.test_batch_size

)

print("===> Building model")
Expand Down Expand Up @@ -105,7 +144,7 @@ def validation_step(engine, batch):
psnr = PSNR(data_range=1)
psnr.attach(evaluator, "psnr")
validate_every = 1
log_interval = 10
log_interval = 100


@trainer.on(Events.ITERATION_COMPLETED(every=log_interval))
Expand All @@ -117,13 +156,9 @@ def log_training_loss(engine):
)


@trainer.on(Events.EPOCH_COMPLETED(every=validate_every))
def run_validation():
evaluator.run(testing_data_loader)


@trainer.on(Events.EPOCH_COMPLETED(every=validate_every))
def log_validation():
evaluator.run(testing_data_loader)
metrics = evaluator.state.metrics
print(f"Epoch: {trainer.state.epoch}, Avg. PSNR: {metrics['psnr']} dB")

Expand All @@ -145,4 +180,4 @@ def checkpoint():
print("Checkpoint saved to {}".format(model_out_path))


trainer.run(training_data_loader, opt.nEpochs)
trainer.run(training_data_loader, opt.n_epochs)