-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathevaluate.py
251 lines (215 loc) · 10.3 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
from argparse import Namespace
import argparse
import json
from collections import defaultdict
import time
from tqdm import tqdm
from traceback import print_exc
import torch
from transformers import AutoTokenizer
from GNN import GAT_HotpotQA
from gen_nodes_repr import build_for_one_item
from datasets import HotpotQA_GNN_Dataset, HotpotQA_QA_Dataset, gen_GNN_batches, generate_QA_batches
from QA_models import AutoQuestionAnswering
from utils import handle_dirs
# args = Namespace(
# # Data and model path.
# dev_json_path = 'data/HotpotQA/hotpot_dev_distractor_v1.json',
# GNN_model_path = 'save_model_GNN/GNN_HotpotQA_hidden64_heads8_pad300_chunk_first.pt',
# QA_model_path = 'save_model_QA_permutations/HotpotQA_QA_BiGRU_roberta-base-squad2.pt',
# model_path = 'data/models/roberta-base-squad2',
# # GNN parameters. MUST match saved pt file.
# features = 768,
# hidden = 64,
# nclass = 2,
# dropout = 0,
# alpha = 0.3,
# nheads = 8,
# pad_max_num = 300,
# # Parameters for QA.
# header_mode='MLP',
# cls_token_id = 0,
# topN_sents = 3,
# max_length = 512,
# uncased = False,
# # Runtime hyper parameter
# cuda=True,
# device=None,
# )
def set_envs(args):
if not args.device:
args.device = torch.device(f"cuda:{args.cuda_id}" \
if torch.cuda.is_available() and args.cuda else "cpu")
args.dev_features_folder = f"dev_feats/{args.model_path.split('/')[-1]}"
handle_dirs(args.dev_features_folder)
def eval(args, dev_json):
final_res = {}
sup_dict = {}
ans_dict = {}
# GNN
classifierGNN = GAT_HotpotQA(features=args.features, hidden=args.hidden, nclass=args.nclass,
dropout=args.dropout, alpha=args.alpha, nheads=args.nheads,
nodes_num=args.pad_max_num)
checkpoint = torch.load(args.GNN_model_path)
try:
classifierGNN.load_state_dict(checkpoint['model'])
except:
classifierGNN.load_state_dict({k.replace('module.',''):v for k,v in checkpoint['model'].items()})
_ = classifierGNN.eval()
classifierGNN.to(args.device)
# LM
tokenizer = AutoTokenizer.from_pretrained(args.model_path, local_files_only=True)
classifierQA = AutoQuestionAnswering.from_pretrained(model_path=args.model_path,
header_mode=args.header_mode,
cls_index=tokenizer.cls_token_id)
classifierQA = classifierQA.to(args.device)
checkpoint = torch.load(args.QA_model_path)
classifierQA.load_state_dict(checkpoint['model'])
_ = classifierQA.eval()
classifierQA.to(args.device)
end_point = args.test_nums if args.test_nums >=0 else len(dev_json)
pbar = tqdm(total = end_point, desc="EVAL")
for start in range(0, end_point, args.step):
try:
end = start + args.step
ques_items = build_for_one_item(dev_json[start:end], args)
datasetGNN = HotpotQA_GNN_Dataset.load_for_eval(ques_items)
datasetGNN.set_parameters(300,0)
# print(datasetGNN)
# GNN eval.
batch_generator = gen_GNN_batches(datasetGNN, 1, shuffle=False, drop_last=False, device=args.device)
# sup_dict = {}
sup_raw_dict = {}
QA_eval_list, Qtype_list = [], [] # for model 2.
for index, batch_dict in enumerate(batch_generator):
with torch.no_grad():
logits_sent, logits_para, logits_Qtype = \
classifierGNN(batch_dict['feature_matrix'], batch_dict['adj'])
max_value, max_index = logits_sent.max(dim=-1) # max_index is predict class.
topN_sent_index_batch = (max_value * batch_dict['sent_mask'].squeeze()).topk(3, dim=-1)[1]
topN_sent_index_batch = topN_sent_index_batch.squeeze().tolist()
item = ques_items[index]
info_list = [[item["node_list"][item["node_list"][s_id].parent_id].content_raw,
item["node_list"][s_id].order_in_para,
item["node_list"][s_id].content_raw] \
for s_id in topN_sent_index_batch]
sup_sent_id_list = [i[:-1] for i in info_list]
sup_sent_list = [i[-1] for i in info_list]
_values, indices = logits_Qtype.max(dim=-1)
Qtype_list.append(indices.tolist()[0])
sup_dict[item['id']] = sup_sent_id_list
sup_raw_dict[item['id']] = sup_sent_list
question = item["node_list"][0].content_raw
QA_eval_list.append((question, sup_sent_list))
# LM eval.
datasetQA = HotpotQA_QA_Dataset.load_for_eval(QA_eval_list)
datasetQA.set_parameters(tokenizer=tokenizer, topN_sents=args.topN_sents,
max_length=args.max_length, uncased=args.uncased,
permutations=False)
batch_generatorQA = generate_QA_batches(datasetQA, 1, shuffle=False, drop_last=False, device=args.device)
# print(datasetQA)
# ans_dict = {}
ans_dict_topN = defaultdict(list)
for index, batch_dict in enumerate(batch_generatorQA):
with torch.no_grad():
res = classifierQA(**batch_dict)
start_top_log_probs, start_top_index, end_top_log_probs, end_top_index, cls_logits = res[:5]
start_top_index = start_top_index.squeeze().tolist()
end_top_index = end_top_index.squeeze().tolist()
assert len(start_top_index) == len(end_top_index)
input_ids = batch_dict['input_ids'].squeeze().tolist()
item = ques_items[index]
for index,(i,j) in enumerate(zip(start_top_index,end_top_index)):
if index == 0:
if Qtype_list[index] == 0:
ans_dict[item['id']] = tokenizer.decode(input_ids[i:j+1])
else: # comparations
_values, indices = cls_logits.max(dim=-1)
ans = 'yes' if indices.tolist()[0] == 1 else 'no'
ans_dict[item['id']] = ans
ans_dict_topN[item['id']].append(tokenizer.decode(input_ids[i:j+1]))
pbar.update()
del ques_items
except:
print_exc()
# combine.
final_res['answer'] = ans_dict
final_res['sp'] = sup_dict
return final_res
def main(args):
set_envs(args)
with open(args.dev_json_path, 'r', encoding='utf-8') as f1:
dev_json = json.load(f1)
res = eval(args, dev_json)
return res
def make_args():
parser = argparse.ArgumentParser()
# Data and model path.
parser.add_argument(
"--dev_json_path",
default="data/HotpotQA/hotpot_dev_distractor_v1.json",
type=str,help="remain",)
parser.add_argument(
"--GNN_model_path",
default='save_model_GNN/GNN_HotpotQA_hidden64_heads8_pad300_chunk_first.pt',
type=str,help="remain",)
parser.add_argument(
"--QA_model_path",
default='save_model_QA_permutations/HotpotQA_QA_BiGRU_roberta-base-squad2.pt',
type=str,help="remain",)
parser.add_argument(
"--model_path",
default='data/models/roberta-base-squad2',
type=str,help="remain",)
parser.add_argument("--dev_features_folder",default='',type=str,help="remain")
# GNN parameters. MUST match saved pt file.
parser.add_argument("--features",default=768,type=int,help="remain")
parser.add_argument("--hidden",default=64,type=int,help="remain")
parser.add_argument("--nclass",default=2,type=int,help="remain")
parser.add_argument("--dropout",default=0.0,type=float,help="remain")
parser.add_argument("--alpha",default=0.3,type=float,help="remain")
parser.add_argument("--nheads",default=8,type=int,help="remain")
parser.add_argument("--pad_max_num",default=300,type=int,help="remain")
# Parameters for QA.
parser.add_argument("--header_mode",default='MLP',type=str,help="remain")
parser.add_argument("--cls_token_id",default=0,type=int,help="remain")
parser.add_argument("--topN_sents",default=3,type=int,help="remain")
parser.add_argument("--max_length",default=512,type=int,help="remain")
parser.add_argument("--uncased", action="store_true", help="remain")
# Runtime hyper parameter
parser.add_argument("--cuda", action="store_true", help="remain")
parser.add_argument("--cuda_id",default=0,type=int,help="remain")
parser.add_argument("--device",default=None,type=str,help="remain")
parser.add_argument("--do_eval", action="store_true", help="remain")
parser.add_argument("--step",default=100,type=int,help="remain")
# test setting
parser.add_argument("--test_nums",default=-1,type=int,help="remain")
args = parser.parse_args()
return args
if __name__ == "__main__":
args = make_args()
res = main(args)
time_now = time.strftime("%Y-%m-%d_%H-%M-%S", time.localtime())
with open(f"dev_distractor_pred_{time_now}.json", 'w', encoding='utf-8') as f1:
json.dump(res, f1)
if args.do_eval:
import hotpot_evaluate_v1
hotpot_evaluate_v1.eval(f"dev_distractor_pred_{time_now}.json", args.dev_json_path)
"""
test:
python evaluate.py --cuda --cuda_id 0 \
--hidden 256 --nheads 8 \
--dev_json_path data/HotpotQA/hotpot_dev_distractor_v1.json \
--GNN_model_path data/models_checkpoints/GNN/GNN_hidden256_heads8_pad300.pt \
--QA_model_path data/models_checkpoints/QA/HotpotQA_QA_MLP+unfreeze2_roberta-base.pt \
--model_path data/models/roberta-base \
--test_nums 10 --step 3
formal:
nohup python evaluate.py --cuda --cuda_id 0 \
--hidden 256 --nheads 8 \
--dev_json_path data/HotpotQA/hotpot_dev_distractor_v1.json \
--GNN_model_path data/models_checkpoints/GNN/GNN_hidden256_heads8_pad300.pt \
--QA_model_path data/models_checkpoints/QA/HotpotQA_QA_MLP+unfreeze2_roberta-base.pt \
--model_path data/models/roberta-base \
--step 30 >> eval_256_8.log &
"""