-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathevaluate.py
124 lines (99 loc) · 4.87 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
import torch
from tools import builder
from utils.config import *
from evals.fid_is import compute_statistics, compute_inception_score
from utils.logger import *
from utils import misc
import numpy as np
from datasets import build_dataset_from_cfg
from evals.classifier.text_queries import generate_all_queries
from evals.classifier.classifier import PointNetClassifier, pc_norm
def evalulate(inf_config, cls_config, with_color=False, multiple=1):
text_queries, text_labels = generate_all_queries(prefix="a")
# build model
base_model = builder.model_builder(inf_config.model)
base_model.cuda()
base_model.eval()
npoints = cls_config.npoints
test_dataset = build_dataset_from_cfg(cls_config.dataset.val._base_, cls_config.dataset.val.others)
test_dataloader = torch.utils.data.DataLoader(test_dataset, batch_size=cls_config.total_bs, shuffle=False,
drop_last=False, num_workers=8)
classifier = PointNetClassifier(normal_channel=with_color)
classifier.load_model_from_ckpt(cls_config.ckpt_path)
classifier.cuda()
classifier.eval()
with torch.no_grad():
gen_features = []
gen_predictions = []
gen_labels = []
for i in range(multiple):
gen_points = base_model.text_condition_generation(text_queries)
gen_points = misc.fps(gen_points, npoints)
gen_points = pc_norm(gen_points)
gen_feature, gen_prediction = classifier.features_and_preds(gen_points)
gen_features.append(gen_feature)
gen_predictions.append(gen_prediction)
gen_labels += text_labels
gen_features = torch.cat(gen_features, dim=0)
gen_predictions = torch.cat(gen_predictions, dim=0)
gen_labels = torch.tensor(gen_labels, dtype=torch.long, device=gen_points.device)
_, acc = classifier.get_loss_acc(gen_predictions, gen_labels)
gt_features = []
for idx, (data, _, _) in enumerate(test_dataloader):
gt_points = data.cuda()
gt_points = misc.fps(gt_points, npoints)
gt_points = pc_norm(gt_points)
features, _ = classifier.features_and_preds(gt_points)
gt_features.append(features)
gt_features = torch.cat(gt_features, dim=0)
stats_1 = compute_statistics(gen_features.cpu().numpy())
stats_2 = compute_statistics(gt_features.cpu().numpy())
p_fid = stats_1.frechet_distance(stats_2)
p_is = compute_inception_score(gen_predictions.cpu().numpy())
return acc, p_fid, p_is
def eval_from_npy(path, cls_config, with_color=False):
gen_data = np.load(path, allow_pickle=True).item()
gen_labels = gen_data["labels"]
gen_points = torch.zeros(234, 1024, 3, device="cuda")
for i in range(234):
gen_points[i] = torch.tensor(gen_data["points"][i], device="cuda")
bs = 32
npoints = cls_config.npoints
test_dataset = build_dataset_from_cfg(cls_config.dataset.val._base_, cls_config.dataset.val.others)
test_dataloader = torch.utils.data.DataLoader(test_dataset, batch_size=bs * 2, shuffle=False,
drop_last=False, num_workers=8)
classifier = PointNetClassifier(normal_channel=with_color)
classifier.load_model_from_ckpt(cls_config.ckpt_path)
classifier.cuda()
classifier.eval()
with torch.no_grad():
gen_features = []
gen_predictions = []
gen_points = pc_norm(gen_points)
gen_feature, gen_prediction = classifier.features_and_preds(gen_points)
gen_features.append(gen_feature)
gen_predictions.append(gen_prediction)
gen_features = torch.cat(gen_features, dim=0)
gen_predictions = torch.cat(gen_predictions, dim=0)
gen_labels = torch.tensor(gen_labels, dtype=torch.long, device=gen_points.device)
_, acc = classifier.get_loss_acc(gen_predictions, gen_labels)
gt_features = []
for idx, (taxonomy_ids, model_ids, data, _, _, _) in enumerate(test_dataloader):
gt_points = data.cuda()
gt_points = misc.fps(gt_points, npoints)
gt_points = pc_norm(gt_points)
features, _ = classifier.features_and_preds(gt_points)
gt_features.append(features)
gt_features = torch.cat(gt_features, dim=0)
stats_1 = compute_statistics(gen_features.cpu().numpy())
stats_2 = compute_statistics(gt_features.cpu().numpy())
p_fid = stats_1.frechet_distance(stats_2)
p_is = compute_inception_score(gen_predictions.cpu().numpy())
return acc, p_fid, p_is
if __name__ == "__main__":
logger = get_logger("classifier")
with_color = False
inf_config = cfg_from_yaml_file("cfgs/inference.yaml")
cls_config = cfg_from_yaml_file("cfgs/classifier.yaml")
acc, p_fid, p_is = evalulate(inf_config, cls_config, with_color=with_color)
print_log(f"Acc: {acc} P-FID: {p_fid} P-IS: {p_is}", logger=logger)