-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_base.py
374 lines (284 loc) · 14.3 KB
/
train_base.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
import sys
import wandb
import argparse
import prettytable as pt
import torch.backends.cudnn as cudnn
from utils import *
from tqdm import tqdm
from eval_map import eval_map
from mmdet.core import multi_apply
from matcher import build_matcher
from dataset import build_dataloader
from criterion import build_criterion
from models import build_model
from torch.nn.parallel import DistributedDataParallel
def get_args_parser():
parser = argparse.ArgumentParser()
parser.add_argument(
"--opts",
help="Modify config options by adding 'KEY VALUE' pairs.",
default=None,
nargs='+',
)
# * Optimizer
parser.add_argument('--lr', default=1e-4, type=float)
parser.add_argument('--min_lr', type=float, default=1e-5, metavar='LR',
help='lower lr bound for cyclic schedulers that hit 0')
parser.add_argument('--weight_decay', default=1e-4, type=float)
parser.add_argument('--warmup_epochs', type=int, default=5, metavar='N',
help='epochs to warmup LR')
# * SSOD Settings
parser.add_argument('--enable_semi_sup', action='store_true')
parser.add_argument('--burn_up', default=50, type=int)
parser.add_argument('--ratio', default=10, type=int, choices=[5, 10, 15, 20])
parser.add_argument('--ema_keep_rate', default=0.99, type=float)
# * Logger
parser.add_argument('--use_wandb', action='store_true')
# * Train
parser.add_argument('--batch_size', default=4, type=int)
parser.add_argument('--epochs', default=200, type=int)
parser.add_argument('--start_eval', default=50, type=int)
parser.add_argument('--clip_max_norm', default=0.1, type=float,
help='gradient clipping max norm')
parser.add_argument('--seed', default=0, type=int)
parser.add_argument('--resume', default='',
help='resume from checkpoint')
parser.add_argument('--output_dir', default='', help='path where to save, empty for no saving')
parser.add_argument('--start_epoch', default=0, type=int, metavar='N', help='start epoch')
# * Loss
parser.add_argument('--reg_loss_coef', default=2e-3, type=float)
parser.add_argument('--cls_loss_coef', default=1, type=float)
parser.add_argument('--eos_coef', default=0.4, type=float,
help="Relative classification weight of the no-object class")
# * Matcher
parser.add_argument('--set_cost_point', default=0.1, type=float,
help="L2 point coefficient in the matching cost")
parser.add_argument('--set_cost_class', default=1, type=float,
help="Class coefficient in the matching cost")
# * Model
parser.add_argument('--space', default=8, type=float)
parser.add_argument('--num_classes', type=int, default=6,
help="Number of cell categories")
parser.add_argument('--dropout', default=0.1, type=float,
help="Dropout applied in the MLPs")
parser.add_argument('--backbone', default='resnet50', type=str,
help="Name of the convolutional backbone to use")
parser.add_argument('--hidden_dim', default=256, type=int,
help="Size of the embeddings (dimension of the transformer)")
parser.add_argument('--frozen_weights', type=str, default=None,
help="Path to the pretrained model. If set, only the mask head will be trained")
# * for CLTR Model
parser.add_argument('--position_embedding', default='sine', type=str, choices=('sine', 'learned'),
help="Type of positional embedding to use on top of the image features")
parser.add_argument('--enc_layers', default=6, type=int,
help="Number of encoding layers in the transformer")
parser.add_argument('--dim_feedforward', default=2048, type=int,
help="Intermediate size of the feedforward layers in the transformer blocks")
parser.add_argument('--nheads', default=8, type=int,
help="Number of attention heads inside the transformer's attentions")
parser.add_argument('--pre_norm', action='store_true')
# * Dataset
parser.add_argument('--dataset', default='pdl1', type=str)
parser.add_argument('--num_workers', default=8, type=int)
# * Evaluator
parser.add_argument('--test', action='store_true')
parser.add_argument('--match_dis', default=20, type=int)
parser.add_argument('--nms_thr', default=-1, type=int)
# * Distributed training
parser.add_argument("--local_rank", type=int, help='local rank for DistributedDataParallel')
parser.add_argument('--world_size', default=1, type=int, help='number of distributed processes')
parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training')
return parser
def do_train():
rank = args.rank if args.distributed else 0
if rank == 0 and args.use_wandb:
run = wandb.init(project='sscr', entity="shuizy")
run.name = run.id
run.save()
cfg = wandb.config
for k, v in args.__dict__.items():
setattr(cfg, k, v)
model = Models(rank)
model_without_ddp = model
if args.distributed:
model = DistributedDataParallel(model, device_ids=[rank], output_device=rank)
model_without_ddp = model.module
data_loaders = build_dataloader(args)
matcher = build_matcher(args)
criterion = build_criterion(rank, matcher, args)
optimizer = torch.optim.AdamW(model.parameters(), lr=args.lr, weight_decay=args.weight_decay)
# load checkpoint
max_cls_f1 = load_checkpoint(args, model, optimizer) if args.resume else 0
for epoch in range(args.start_epoch, args.epochs):
model.train()
log_info = {}
log_info = train_one_epoch(model.stu_1, data_loaders['train'], optimizer, epoch, criterion, rank, log_info)
if epoch >= args.start_eval:
save_model(epoch, args.output_dir, model, optimizer, max_cls_f1)
metrics_tea_1, metrics_string_tea_1 = do_eval(model.stu_1,
data_loaders['val'],
epoch,
rank=rank,
nms_thr=args.nms_thr,
match_dis=args.match_dis)
log_info.update(dict(zip(["Tea_1 Det_P", "Tea_1 Det_R", "Tea_1 Det_F1"], metrics_tea_1['Det'])))
log_info.update(dict(zip(["Tea_1 Cls_P", "Tea_1 Cls_R", "Tea_1 Cls_F1"], metrics_tea_1['Cls'])))
tea_1_f1 = metrics_tea_1['分类'][-1]
if rank == 0:
if tea_1_f1 > max_cls_f1:
max_cls_f1 = tea_1_f1
save_model(epoch, args.output_dir, model, optimizer, max_cls_f1, metrics_string_tea_1, mode='best')
if rank == 0 and args.use_wandb:
wandb.log(log_info, step=epoch)
if args.distributed:
cleanup()
def train_one_epoch(student, train_loader, optimizer, epoch, criterion, rank, log_info):
if args.distributed:
train_loader.sampler.set_epoch(epoch)
iterator = train_loader
if rank == 0:
iterator = tqdm(train_loader, file=sys.stdout)
iterator.set_description(f"Train epoch-{epoch}")
for data_iter_step, (labeled_images, points, labels, lengths) in enumerate(iterator):
# warmup lr
labeled_images = labeled_images.cuda(rank)
points = points.cuda(rank)
labels = labels.cuda(rank)
# all points N×2
targets = {'gt_nums': lengths,
'gt_points': [points_seq[points_seq != -1].reshape(-1, 2) for points_seq in points],
'gt_labels': [label_seq[label_seq != -1] for label_seq in labels]}
outputs = student(labeled_images)
losses = criterion(outputs, targets, branch='sup')
optimizer.zero_grad()
sum(losses.values()).backward()
optimizer.step()
gathered_losses = torch.stack(list(losses.values()))
if args.distributed:
dist.reduce(gathered_losses, 0, op=dist.ReduceOp.SUM)
gathered_losses /= args.world_size
for k, v in zip(losses.keys(), gathered_losses):
log_info[k] = log_info.get(k, 0) + v.item()
return log_info
def do_eval(model,
data_loader_test,
epoch=0,
rank=0,
nms_thr=-1,
match_dis=20,
calc_map=False,
eps=1e-6):
model.eval()
class_names = data_loader_test.dataset.classes
cls_results = []
cls_annotations = []
cls_pn, cls_tn = list(torch.zeros(args.num_classes).cuda(rank) for _ in range(2))
cls_rn = torch.zeros(match_dis, args.num_classes).cuda(rank)
det_pn, det_tn = list(torch.zeros(1).cuda(rank) for _ in range(2))
det_rn = torch.zeros(match_dis).cuda(rank)
iterator = data_loader_test
if rank == 0:
iterator = tqdm(data_loader_test, file=sys.stdout)
iterator.set_description("Test epoch-%d" % epoch)
for i, (images, gd_points, labels) in enumerate(iterator):
images = images.cuda(rank)
pd_points, pd_scores, pd_classes = predict(model, images, nms_thr)
gd_points = gd_points[0].reshape(-1, 2).numpy()
labels = labels[0].numpy()
cls_annotations.append({'bboxes': gd_points, 'labels': labels})
cls_results_sample = []
for c in range(args.num_classes):
ind = (pd_classes == c)
category_pd_points = pd_points[ind]
category_gd_points = gd_points[labels == c]
cls_results_sample.append(np.concatenate([category_pd_points, pd_scores[ind, c][:, None]], axis=-1))
pred_num, gd_num = len(category_pd_points), len(category_gd_points)
cls_pn[c] += pred_num
cls_tn[c] += gd_num
if pred_num and gd_num:
cls_right_nums, _ = multi_apply(binary_match,
[category_pd_points],
[category_gd_points],
[match_dis])
cls_rn[:, c] += torch.tensor(cls_right_nums, device=cls_rn.device)
cls_results.append(cls_results_sample)
det_pn += len(pd_points)
det_tn += len(gd_points)
if len(pd_points) and len(gd_points):
det_right_nums, _ = multi_apply(binary_match,
[pd_points],
[gd_points],
[match_dis])
det_rn += torch.tensor(det_right_nums, device=det_rn.device)
if args.world_size > 1:
dist.all_reduce(det_rn, op=dist.ReduceOp.SUM)
dist.all_reduce(det_tn, op=dist.ReduceOp.SUM)
dist.all_reduce(det_pn, op=dist.ReduceOp.SUM)
dist.all_reduce(cls_pn, op=dist.ReduceOp.SUM)
dist.all_reduce(cls_tn, op=dist.ReduceOp.SUM)
dist.all_reduce(cls_rn, op=dist.ReduceOp.SUM)
det_r = det_rn / (det_tn + eps) * 100
det_p = det_rn / (det_pn + eps) * 100
det_f1 = (2 * det_r * det_p) / (det_p + det_r + eps)
cls_r = cls_rn / (cls_tn + eps) * 100
cls_p = cls_rn / (cls_pn + eps) * 100
cls_f1 = (2 * cls_r * cls_p) / (cls_r + cls_p + eps)
table = pt.PrettyTable()
table.add_column('Classes', class_names)
table.add_column('P', cls_p.mean(0).tolist())
table.add_column('R', cls_r.mean(0).tolist())
table.add_column('F1', cls_f1.mean(0).tolist())
table.add_row(['---'] * 4)
print(cls_f1.mean(1))
det_p, det_r, det_f1 = det_p.mean().item(), det_r.mean().item(), det_f1.mean().item()
cls_p, cls_r, cls_f1 = cls_p.mean().item(), cls_r.mean().item(), cls_f1.mean().item()
table.add_row(['Det', det_p, det_r, det_f1])
table.add_row(['Cls', cls_p, cls_r, cls_f1])
print(table)
if calc_map:
eval_map(cls_results, cls_annotations, iou_thr=-match_dis, classes=class_names)
metrics = {'Det': [det_p, det_r, det_f1], 'Cls': [cls_p, cls_r, cls_f1]}
return metrics, table.get_string()
@torch.no_grad()
def update_teacher_model(student_model, ema_state_dict, global_step):
student_model_dict = student_model.state_dict()
keep_rate = min(1 - 1 / (global_step + 1), args.ema_keep_rate)
new_teacher_dict = OrderedDict()
for key, value in ema_state_dict.items():
if key in student_model_dict.keys():
new_teacher_dict[key] = (
student_model_dict[key] *
(1 - keep_rate) + value * keep_rate
)
else:
raise Exception("{} is not found in student model".format(key))
return new_teacher_dict
class Models(nn.Module):
def __init__(self, rank=0):
super(Models, self).__init__()
stu_1 = build_model(args).cuda(rank)
self.stu_1 = stu_1
if __name__ == '__main__':
parser = get_args_parser()
args = parser.parse_args()
init_distributed_mode(args)
set_seed(args)
cudnn.benchmark = True
if not args.test:
do_train()
else:
from dataset import build_dataset
from torch.utils.data import DataLoader
from torch.utils.data.distributed import DistributedSampler
model = Models()
rank = args.gpu if args.distributed else 0
ckpt = torch.load(f'./checkpoint/{args.dataset}_sup_{args.ratio}_base/best.pth', map_location='cpu')
print(ckpt['metrics'], ckpt['epoch'])
model.load_state_dict(ckpt.get('model', ckpt))
model.cuda(rank)
dataset_test = build_dataset(args, 'test')
test_sampler = DistributedSampler(dataset_test, shuffle=False) if args.distributed else None
data_loader_test = DataLoader(dataset_test, batch_size=1, shuffle=False, num_workers=0, sampler=test_sampler)
do_eval(model.stu_1, data_loader_test, nms_thr=args.nms_thr, rank=rank, match_dis=args.match_dis)
if args.distributed:
cleanup()