Skip to content

qlk999/SSPCR

Repository files navigation

An official implementation of paper "Semi-Supervised Cell Recognition under Point Supervision"

Setup

Python 3.7

pip install -r requirements.txt 

Data preparation

Two choices.

  • You can download the raw data from CoNIC to datasets/conic folder and then run this script to obtain training/validation/test subsets .
  • A more convenient way is to download the ready-made data subsets from Google Drive (after review).

Train

To reproduce baseline models:

python train_base.py --dataset conic --space 8 --num_classes 6 --eos_coef 0.4 --match_dis 6 --output_dir=he_sup_5_base --ratio 5

To train PCR models under our proposed framework:

python train_semi.py --dataset conic --space 8 --num_classes 6 --eos_coef 0.4 --match_dis 6 --output_dir=he_sup_5_semi --ratio 5 --enable_semi_sup

Test

To test baseline models, run

python train_base.py --dataset conic --space 8 --num_classes 6 --match_dis 6 --ratio 5 --test

To test models trained using our framework, run

python train_semi.py --dataset conic --space 8 --num_classes 6 --match_dis 6 --ratio 5 --test

Checkpoints

The checkpoints will be also released here after review.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages