Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
19 changes: 19 additions & 0 deletions REPORT.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,19 @@
## Из 1068 людей не совпадают профессия и должность у 793.

### Топ-5 образований людей, которые работают менеджерами:
|Образование|Количество|
|---|---|
|бакалавр|11|
|менеджер|10|
|специалист|6|
|экономист|6|
|экономист-менеджер|4|

### Топ-5 должностей людей, которые по диплому являются инженерами:
|Должность|Количество|
|---|---|
|заместитель директора|3|
|главный инженер |3|
|ведущий инженер-конструктор|2|
|инженер лесопользования|2|
|директор|2|
50 changes: 50 additions & 0 deletions classwork.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,50 @@
import numpy as np
import pandas as pd
import matplotlib.pyplot as mp

works = pd.read_csv("works.csv")

# 1
print("Общее количество записей:", works.shape[0])

# 2
print("Количество мужчин:", works[works["gender"] == "Мужской"].shape[0])
print("Количество женщин:", (works["gender"] == "Женский").sum())

# 3
print("Количество не NaN значений", works["skills"].count())

# 4
print("Все заполненные скиллы\n", works['skills'].dropna())

# 5
skills_bool = works['skills'].str.lower().str.contains('python | питон') & works['skills'].notnull()
print("Зарплата тех, у кого в скиллах есть Python (Питон)\n", works[skills_bool]['salary'])

# 6
salary_p = np.linspace(0.1, 1, 10)
w = works[works.gender == "Женский"]['salary'].quantile(salary_p)
m = works[works.gender == "Мужской"]['salary'].quantile(salary_p)

mp.plot(m, salary_p, color='blue')
mp.plot(w, salary_p, color='r')
mp.xlabel('salary')
mp.ylabel('quantile')
mp.show()

# 7
men_salary = works.query("gender == 'Мужской'").groupby("educationType").agg("mean").reset_index()
women_salary = works.query("gender == 'Женский'").groupby("educationType").agg("mean").reset_index()

educationTypes = men_salary["educationType"].values
men_salaries = men_salary["salary"].values
women_salary = women_salary["salary"].values

index = np.arange(len(educationTypes))

bw = 0.4
mp.bar(index-bw/2, men_salaries, bw, color="b", label="Средняя зарплата мужчин")
mp.bar(index+bw/2, women_salary, bw, color="r", label="Средняя зарплата женщин")
mp.xticks(index, educationTypes, rotation=45)
mp.legend()
mp.show()
34 changes: 34 additions & 0 deletions homework.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,34 @@
import pandas as pd


def does_not_match(jobTitle, qualification, data):
count = 0
for (first_field, second_field) in zip(data[jobTitle], data[qualification]):
if not it_coincided(first_field, second_field) and not it_coincided(second_field, first_field):
count += 1
return count


def it_coincided(first_field, second_field):
words = first_field.lower().replace('-', ' ').split()
for word in words:
if word in second_field.lower():
return True
return False


def top_people(top_number, data, first_field, second_field, search_word):
return data[data[first_field].str.lower().str.contains(search_word[:-2])][second_field].str.lower().value_counts() \
.head(top_number)


works = pd.read_csv("works.csv").dropna()

does_not_match_count = does_not_match("jobTitle", "qualification", works)
print(f"Из {works.shape[0]} людей должность и профессия не совпадают у {does_not_match_count}.\n")

print("Топ-5 образований людей, которые работают менеджерами:")
print(top_people(5, works, "jobTitle", "qualification", "менеджер"), "\n")

print("Топ-5 должностей людей, которые по диплому являются инженерами")
print(top_people(5, works, "qualification", "jobTitle", "инженер"), "\n")