Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
8 changes: 8 additions & 0 deletions .idea/.gitignore

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

1 change: 1 addition & 0 deletions .idea/.name

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

6 changes: 6 additions & 0 deletions .idea/inspectionProfiles/profiles_settings.xml

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

4 changes: 4 additions & 0 deletions .idea/misc.xml

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

8 changes: 8 additions & 0 deletions .idea/modules.xml

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

8 changes: 8 additions & 0 deletions .idea/pandas_task.iml

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

6 changes: 6 additions & 0 deletions .idea/vcs.xml

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

31 changes: 31 additions & 0 deletions HomeWork.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,31 @@
import pandas as pd


def count_not_match_fields(field1, field2, data):
res_count = 0
for (f1, f2) in zip(data[field1], data[field2]):
if not is_match(f1, f2) and not is_match(f2, f1):
res_count += 1
return res_count


def get_top(size, data, searched, returned, search_str):
return data[data[searched].str.lower().str.contains(search_str[:-2])][returned].str.lower().value_counts().head(size)


def is_match(field1, field2):
for word in field1.lower().replace('-', ' ').split():
if word in field2.lower():
return True
return False


works = pd.read_csv("works.csv").dropna()
count_not_match = count_not_match_fields("jobTitle", "qualification", works)
print(f"Из {works.shape[0]} людей не совпадают профессия и должность у {count_not_match}")

print("\nТоп образований людей, которые работают менеджерами")
print(get_top(5, works, "jobTitle", "qualification", "менеджер"))

print("\nТоп должностей людей, которые по диплому являются инженерами")
print(get_top(5, works, "qualification", "jobTitle", "инженер"))
15 changes: 15 additions & 0 deletions Result.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,15 @@
1. Из 1068 людей не совпадают профессия и должность у 793

2. Топ образований людей, которые работают менеджерами
бакалавр 11
менеджер 10
специалист 6
экономист 6
экономист-менеджер 4

3. Топ должностей людей, которые по диплому являются инженерами
заместитель директора 3
главный инженер 3
ведущий инженер-конструктор 2
инженер лесопользования 2
директор 2
39 changes: 39 additions & 0 deletions lec.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,39 @@
import numpy as np
import pandas as pd
import matplotlib as plt

# 1 task
print(works.info())
print(works.shape[0])
print(len(works.index))

# 2 task
print(works[works["gender"] == "Мужской"].shape[0])
print((works["gender"] == "Женский").sum())
print(works["gender"].value_counts())

# 3 task
print(works["skills"].notnull().sum())
print(works.info())
print(works["skills"].count())
print(works[works["skills"].notnull()]["skills"])
print(works['skills'].dropna())
print(works.query("skills == skills")["skills"])
print(works.query('salary == 15000'))

# 4 task
edu = 'Высшее'
gen = 'Мужской'
print(works.query("educationType == @edu and gender == @gen")[['salary', "educationType", "gender"]])

# 5 task
mask = works["skills"].str.lower().str.contains("python|питон") & works["skills"].notnull()
print(works[mask]["salary"])

# 6 task
works = pd.read_csv("./works.csv")
person = np.linspace(.1, 1, 10)
men = works.query('gender == "Мужской"').quantile(person)
women = works.query('gender == "Женский"').quantile(person)
print(men)
print(women)