Skip to content

rakshith-ramagiri/mobilevit

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

24 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

MobileViT

A PyTorch implementation of MobileViT as presented in the paper "MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer".

Tutorial

READ: How to Train MobileViT on a Custom Dataset

Install Dependencies

# install dependencies
pip3 install 'typer[all]' rich einops matplotlib jupyterlab numpy \
ipywidgets onnxruntime pillow opencv-python
 
# install pytorch (CUDA 11.6)
pip3 install torch torchvision torchaudio \
--extra-index-url https://download.pytorch.org/whl/cu116

# install pytorch (CPU)
pip3 install torch torchvision torchaudio

Classifier Training

Check whether all dependencies are satisfied. This 👇 will run a random torch tensor through the three MobileViT architectures and print their sizees (# of model parameters).

python3 train.py check

Before proceeding to train MobileViT on a custom dataset. Ensure the dataset is structured as shown below:

dataset
├── test
│   ├── class_1
│   │   └── image_1.png
│   ├── class_2
│   │   └── image_1.png
│   └── class_3
│       └── image_1.png
├── train
│   ├── class_1
│   │   └── image_1.png
│   ├── class_2
│   │   └── image_1.png
│   └── class_3
│       └── image_1.png
└── valid
    ├── class_1
    │   └── image_1.png
    ├── class_2
    │   └── image_1.png
    └── class_3
        └── image_1.png

To start classification model training, type the following command:

python3 train.py train -i <dataset_dir> -s <model_weights_savedir>\
 --imgsize 256 --batchsize 32 --epochs 100 --model-size XXS/XS/S

To check all available options for training, type the command:

python3 train.py train

This ☝️ will print a help dialog showing all the options that can be configured.

Model Export

To export trained MobileViT model to ONNX or TorchScript format, type the command:

python3 train.py export

This ☝️ will list all the arguments that need to be passed to successfully export the model to the supported formats.

Assuming you followed the tutorial above ☝️, we can export that model to ONNX format using the command:

python3 train.py export -i weights/mobilevit_s_birds400.pth\
 -d birds400-dataset  -f ONNX --imgsize 256 --model-size S --device CPU 

Citation

@article{mehta2021mobilevit,
  title={MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer},
  author={Mehta, Sachin and Rastegari, Mohammad},
  journal={arXiv preprint arXiv:2110.02178},
  year={2021}
}

Credits

Code adopted from MobileViT-PyTorch.