Skip to content

Commit

Permalink
feat(tapa) decrease knn_chipknn to 8 PEs
Browse files Browse the repository at this point in the history
  • Loading branch information
vagrantxiao24 committed Sep 9, 2024
1 parent 04e3287 commit bade709
Show file tree
Hide file tree
Showing 12 changed files with 2,131 additions and 0 deletions.
27 changes: 27 additions & 0 deletions benchmarks/tapa_flow/knn_chipknn/k2D_float_8PEs/Makefile
Original file line number Diff line number Diff line change
@@ -0,0 +1,27 @@
# Copyright (c) 2024 RapidStream Design Automation, Inc. and contributors. All rights reserved.
# The contributor(s) of this file has/have agreed to the RapidStream Contributor License Agreement.

ROOT_DIR := $(shell git rev-parse --show-toplevel)
GRP_UTIL := $(ROOT_DIR)/common/util/get_group.py
TEMP_DIR := $(CURDIR)/build
RS_TARGET := $(CURDIR)/$(TEMP_DIR)/dse/candidate_0/exported/impl/vitis_run_hw
TAPA_XO := $(CURDIR)/design/generated/knn.xo
PLATFORM := xilinx_u280_gen3x16_xdma_1_202211_1
PART := xcu280-fsvh2892-2L-e
RUN_FILE := $(CURDIR)/run.py

all: $(RS_TARGET)

$(RS_TARGET):$(TAPA_XO)
rapidstream $(RUN_FILE)

show_groups:
rapidstream $(GRP_UTIL) -i $(TEMP_DIR)/passes/0-imported.json \
-o $(TEMP_DIR)/module_types.csv


clean:
rm -rf $(TEMP_DIR) *.log
rm -rf .Xil .run
rm -rf *.exe
rm -rf .ipcache
145 changes: 145 additions & 0 deletions benchmarks/tapa_flow/knn_chipknn/k2D_float_8PEs/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,145 @@
<!--
Copyright (c) 2024 RapidStream Design Automation, Inc. and contributors. All rights reserved.
The contributor(s) of this file has/have agreed to the RapidStream Contributor License Agreement.
-->

<img src="https://imagedelivery.net/AU8IzMTGgpVmEBfwPILIgw/1b565657-df33-41f9-f29e-0d539743e700/128" width="64px" alt="RapidStream Logo" />

# TAPA Flow: K Nearest Neighbour

## Introduction


In this recipe, we demonstrate how to use RapidStream to optimize TAPA projects. The basic steps include:

- Compile the HLS C++ code into a Vitis-compatible .xo file using TAPA.
- Optimize the .xo file with RapidStream to obtain an optimized .xo file.
- Use Vitis to compile the optimized .xo file into an .xclbin file for FPGA deployment.

## Tutorial

### Step 1 (Done): Generate the Xilinx Object File (`.xo`)


We utilize TAPA to generate the `.xo` file. If you have not installed TAPA, we've already compiled the C++ source to `.xo` using TAPA. The original C++ source files are located in [design/src](design/src). The generated `.xo` file can be found at [design/generated/knn.xo](design/generated/knn.xo). To compile C++ to `.xo` using TAPA, we use the script [design/run_tapa.sh](design/run_tapa.sh), with the detailed commands shown below. For your convenience, we have also backed up all the generated metadata by TAPA in the [design/generated](design/generated/) directory.

```bash
WORK_DIR=generated
tapac \
--work-dir ${WORK_DIR} \
--top Knn \
--part-num xcu280-fsvh2892-2L-e \
--clock-period 3.33 \
-o ${WORK_DIR}/knn.xo \
--connectivity config/link_config.ini \
src/knn.cpp \
2>&1 | tee tapa.log
```

### Step 2: Use Rapidstream to Optimize `.xo` Design

The RapidStream flow conducts design space exploration and generates solutions by taking all TAPA-generated `.xo` file as the input.
The RapidStream flow for TAPA requires the following key inputs:

- **Platform**: The Vitis platform (e.g., `xilinx_u280_gen3x16_xdma_1_202211_1`).
- **Device**: virtual device define by calling rapidstream APIs based on platform (e.g., `get_u280_vitis_device_factory`).
- **.xo file**: The `.xo` file generated by TAPA
- **Connectivity** (.ini): Include the configuration file for `v++` ([link_config.ini](design/config/link_config.ini)).
- **top_module_name**: Top module name for the kernel.
- **Clock**: All the clock and frequencies.
- **Flatten Module**: Within a design, not all modules need to be optimized. The flatten module name is the target module rapidstream will optimize.

The Python snippet below shows how we initiate rapidstream instance to set up the rapidstream environment.

```Python
from rapidstream import get_u280_vitis_device_factory, RapidStreamTAPA
import os
CURR_DIR = os.path.dirname(os.path.abspath(__file__))
INI_PATH = f"{CURR_DIR}/design/config/link_config.ini"
VITIS_PLATFORM = "xilinx_u280_gen3x16_xdma_1_202211_1"
XO_PATH = f"{CURR_DIR}/design/generated/knn.xo"
kernel_name = "Knn"
factory = get_u280_vitis_device_factory(VITIS_PLATFORM)
rs = RapidStreamTAPA(f"{CURR_DIR}/build")
rs.set_virtual_device(factory.generate_virtual_device())
rs.add_xo_file(XO_PATH)
rs.set_vitis_platform(VITIS_PLATFORM)
rs.set_vitis_connectivity_config(INI_PATH)
rs.set_top_module_name(kernel_name)
rs.add_clock("ap_clk", 3.33)
rs.add_flatten_targets([kernel_name])
```

The HBM AXI port connection is described in [design/config/link_config.ini](design/config/link_config.ini).

```bash
[connectivity]
sp=Knn_1.in_0:HBM[0]
sp=Knn_1.in_1:HBM[1]
sp=Knn_1.in_2:HBM[2]
sp=Knn_1.in_3:HBM[3]
sp=Knn_1.in_4:HBM[4]
sp=Knn_1.in_5:HBM[5]
sp=Knn_1.in_6:HBM[6]
sp=Knn_1.in_7:HBM[7]
sp=Knn_1.in_8:HBM[8]
sp=Knn_1.in_9:HBM[9]
sp=Knn_1.in_10:HBM[10]
sp=Knn_1.in_11:HBM[11]
sp=Knn_1.in_12:HBM[12]
sp=Knn_1.in_13:HBM[13]
sp=Knn_1.in_14:HBM[14]
sp=Knn_1.final_out_dist:HBM[14]
sp=Knn_1.final_out_id:HBM[14]
```

As a result, it is necessary to assign the kernel ports to the appropriate slots. The Python code below demonstrates this process. For comprehensive linking details, please refer to the [design/config/link_config.ini](design/config/link_config.ini) file.

```Python
right_slot = "SLOT_X1Y0:SLOT_X1Y0"
left_slot = "SLOT_X0Y0:SLOT_X0Y0"
rs.assign_port_to_region(".*in_.*", left_slot)
rs.assign_port_to_region(".*final_out.*", left_slot)
rs.assign_port_to_region("s_axi_control_.*", left_slot)
rs.assign_port_to_region("ap_clk", left_slot)
rs.assign_port_to_region("ap_rst_n", left_slot)
rs.assign_port_to_region("interrupt", left_slot)
```

For the complete detail, please refore to [./run.py](./run.py) file. Call the rapidstream by launching the command below or `make all`.

```bash
rapidstream run.py
```

If everything is successful, you should at least get one optimized `.xclbin` file.



### Step 3: Check the Group Module Report


RapidStream mandates a clear distinction between communication and computation within user designs.

- In `Group modules`, users are tasked solely with defining inter-submodule communication. For those familiar with Vivado IP Integrator flow, crafting a Group module mirrors the process of connecting IPs in IPI. RapidStream subsequently integrates appropriate pipeline registers into these Group modules.

- In `Leaf modules`, users retain the flexibility to implement diverse computational patterns, as RapidStream leaves these Leaf modules unchanged.

For further details, please consult the [code style](https://docs.rapidstream-da.com/required-coding-style/) section in our Documentation.

To generate a report on group types, execute the commands below or `run make show_groups`:

```bash
rapidstream ../../../common/util/get_group.py \
-i build/passes/0-imported.json \
-o build/module_types.csv
```

The module types for your design can be found in `build/module_types.csv`. Below, we list the four Group modules. In this design, `Knn` serves as a Group module, while the other three modules are added by RapidStream.

| Module Name | Group Type |
|:--------------------------------:|:--------------:|
| Knn | grouped_module |
|__rs_ap_ctrl_start_ready_pipeline | grouped_module |
|__rs_ff_pipeline | grouped_module |
|__rs_hs_pipeline | grouped_module |
Empty file.
Original file line number Diff line number Diff line change
@@ -0,0 +1,153 @@
{
"Comment": "This file is auto-generated by the tool. Do not modify",
"Platform": {
"Boards": [
{
"Devices": [
{
"DdrBanks": [
{
"AXI_ARBITRATION_SCHEME": "RD_PRI_REG",
"BURST_LENGTH": "8",
"C0": {
"APP_ADDR_WIDTH": "31",
"APP_DATA_WIDTH": "512",
"ControllerType": "DDR4_SDRAM",
"DDR4_ADDR_WIDTH": "17",
"DDR4_AXI_ADDR_WIDTH": "34",
"DDR4_AXI_DATA_WIDTH": "512",
"DDR4_AXI_ID_WIDTH": "1",
"DDR4_AutoPrecharge": "false",
"DDR4_AxiNarrowBurst": "false",
"DDR4_BANK_GROUP_WIDTH": "2",
"DDR4_BANK_WIDTH": "2",
"DDR4_CL": "0",
"DDR4_COLUMN_WIDTH": "10",
"DDR4_CWL": "0",
"DDR4_Mem_Add_Map": "ROW_COLUMN_BANK_INTLV",
"DDR4_Ordering": "Normal",
"DDR4_RANK_WIDTH": "1",
"DDR4_ROW_WIDTH": "17",
"DDR4_tCK": "833",
"DDR4_tCKE": "0",
"DDR4_tFAW": "16",
"DDR4_tMRD": "2",
"DDR4_tRAS": "39",
"DDR4_tRCD": "17",
"DDR4_tREFI": "9363",
"DDR4_tRFC": "421",
"DDR4_tRP": "17",
"DDR4_tRRD_L": "6",
"DDR4_tRRD_S": "4",
"DDR4_tRTP": "10",
"DDR4_tWR": "19",
"DDR4_tWTR_L": "10",
"DDR4_tWTR_S": "4",
"DDR4_tXPR": "109",
"DDR4_tZQCS": "128",
"DDR4_tZQI": "0",
"DDR4_tZQINIT": "256"
},
"CAS_LATENCY": "17",
"CAS_WRITE_LATENCY": "12",
"DATA_WIDTH": "72",
"MEMORY_PART": "MTA18ASF2G72PZ-2G3",
"MEM_ADDR_MAP": "ROW_COLUMN_BANK_INTLV",
"Name": "dynamic_region_memory_subsystem_memory_ddr4_mem00",
"Size": "16GB",
"TIMEPERIOD_PS": "833",
"Type": "ddr4"
},
{
"AXI_ARBITRATION_SCHEME": "RD_PRI_REG",
"BURST_LENGTH": "8",
"C0": {
"APP_ADDR_WIDTH": "31",
"APP_DATA_WIDTH": "512",
"ControllerType": "DDR4_SDRAM",
"DDR4_ADDR_WIDTH": "17",
"DDR4_AXI_ADDR_WIDTH": "34",
"DDR4_AXI_DATA_WIDTH": "512",
"DDR4_AXI_ID_WIDTH": "1",
"DDR4_AutoPrecharge": "false",
"DDR4_AxiNarrowBurst": "false",
"DDR4_BANK_GROUP_WIDTH": "2",
"DDR4_BANK_WIDTH": "2",
"DDR4_CL": "0",
"DDR4_COLUMN_WIDTH": "10",
"DDR4_CWL": "0",
"DDR4_Mem_Add_Map": "ROW_COLUMN_BANK_INTLV",
"DDR4_Ordering": "Normal",
"DDR4_RANK_WIDTH": "1",
"DDR4_ROW_WIDTH": "17",
"DDR4_tCK": "833",
"DDR4_tCKE": "0",
"DDR4_tFAW": "16",
"DDR4_tMRD": "2",
"DDR4_tRAS": "39",
"DDR4_tRCD": "17",
"DDR4_tREFI": "9363",
"DDR4_tRFC": "421",
"DDR4_tRP": "17",
"DDR4_tRRD_L": "6",
"DDR4_tRRD_S": "4",
"DDR4_tRTP": "10",
"DDR4_tWR": "19",
"DDR4_tWTR_L": "10",
"DDR4_tWTR_S": "4",
"DDR4_tXPR": "109",
"DDR4_tZQCS": "128",
"DDR4_tZQI": "0",
"DDR4_tZQINIT": "256"
},
"CAS_LATENCY": "17",
"CAS_WRITE_LATENCY": "12",
"DATA_WIDTH": "72",
"MEMORY_PART": "MTA18ASF2G72PZ-2G3",
"MEM_ADDR_MAP": "ROW_COLUMN_BANK_INTLV",
"Name": "dynamic_region_memory_subsystem_memory_ddr4_mem01",
"Size": "16GB",
"TIMEPERIOD_PS": "833",
"Type": "ddr4"
}
],
"FeatureRom": {
"Aurora_Link": "disabled",
"Board_Mgmt": "enabled",
"Board_Scheduler": "enabled",
"Cdma_Base_Address0": "0",
"Cdma_Base_Address1": "0",
"Cdma_Base_Address2": "0",
"Cdma_Base_Address3": "0",
"Cdma_Size": "4",
"Ddr_Channel_Count": "2",
"Ddr_Channel_Size": "16",
"Debug_Type": "0x2",
"Dr_Base_Address": "0",
"Feature_Bitmap": "197133",
"Fpga_Part_Name": "xcu280-fsvh2892-2L-e",
"Ip_Build_Id": "2719198",
"Major_Version": "10",
"Minor_Version": "1",
"Peer_To_Peer": "enabled",
"Prom_Type": "0x0",
"Time_Since_Epoch": "1579649056",
"Unified_Platform": "enabled",
"Uuid": "f2b82d53-372f-45a4-bbe9-3d1c980216da",
"Vbnv_Name": "xilinx_u280_xdma_201920_3",
"Vivado_Build_Id": "2742762"
},
"Name": "xilinx_u280_xdma_201920_3"
}
],
"NumBoards": "1"
}
],
"ExpandedPR": "false",
"UnifiedPlatform": "true"
},
"Version": {
"FileVersion": "2.0",
"ToolVersion": "2020.2"
}
}
Loading

0 comments on commit bade709

Please sign in to comment.