Skip to content

ravaghi/PretrainedChordMixer

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

PretrainedChordMixer

python torch



Results

The following tables show ROC-AUC x 100% of ChordMixer with and without pretraining, compared with other models.

Variant Effect Prediction in Human Genome

Model/Dataset GRCh38
FineTunedChordMixer 89.87
ProbedChordMixer 86.28
ChordMixer 84.90
KeGRU 70.16
DeeperDeepSEA 86.93
Transformer 68.69
Nyströmformer 82.58
Poolformer 76.00
Linformer 83.22

Open Chromatin Region Prediction in Plant Tissues

Model/Dataset A. Thaliana B. Distachyon O. Sativa MH O. Sativa ZS S. Italica S. Bicolor Z. Mays
FineTunedChordMixer 93.01 93.50 93.99 93.52 94.50 96.59 96.69
ProbedChordMixer 91.51 93.25 92.73 92.40 93.18 95.53 96.98
ChordMixer 89.53 91.14 90.95 90.79 91.93 94.52 92.98
KeGRU 90.83 92.35 92.15 92.14 92.99 95.84 94.64
DeeperDeepSEA 90.12 90.05 91.02 89.70 91.92 94.54 94.84
Transformer 62.51 75.98 71.40 75.01 82.31 82.47 60.96
Nyströmformer 73.54 81.21 77.89 76.85 83.55 87.17 76.95
Poolformer 74.81 79.64 74.56 76.20 81.22 83.69 74.21
Linformer 60.33 72.75 62.39 71.04 70.98 78.05 53.14

DNA Sequence-Based Taxonomy Classification

Model/Dataset Carassius vs. Labeo Sus vs. Bos Danio vs. Cyprinus
FineTunedChordMixer 97.35 96.59 98.67
ProbedChordMixer 97.55 96.67 98.62
ChordMixer 97.19 95.70 98.93
KeGRU 97.02 94.36 98.74
DeeperDeepSEA 97.49 96.53 99.12
Transformer 92.19 86.70 90.06
Nyströmformer 89.85 91.62 94.31
Poolformer 90.72 86.55 92.81
Linformer 86.44 87.88 87.00

Getting started

All of the requirements and their versions are available in requirements.txt, and can be installed by running:

pip install -r requirements.txt

The configurations and hyperparameters can be found in the configs folder. As these are managed by Hydra, they can simply be modified and overwritten, either directly in the config files, or by passing them as arguments to the training script, as follows:

python train.py --config-name=MAIN_CONFIG_NAME dataset=DATASET_CONFIG_NAME parameter=new_value

Note that --config-name and dataset always have to be passed to train.py as arguments. For a list of available config names and datasets, as well as other configuration parameters, run:

python train.py --help

Fine-Tuning and Probing

Three pretrained models are availble for fine-tuning and probing. These can be found under models directory.

  • pcm-cl-1000-human.pt trained on human reference genome GRCh38
  • pcm-cl-1000-plant.pt trained on plant DNA
  • pcm-vl.pt trained on a dataset containing DNA sequences of varying lengths

Pretrained models can be instantiated and fine-tuned as follows:

class FineTunedChordMixer(nn.Module):
    def __init__(self, model_path, freeze, variable_length, n_class):
        super(FineTunedChordMixer, self).__init__()
        self.encoder = ChordMixerEncoder.from_pretrained(
            model_path=model_path,
            freeze=freeze,
            variable_length=variable_length
        )
        self.classifier = ...

    def forward(self, batch):
        ...

The model expectes one hot encoded DNA sequences as input. Run fine-tuning:

python train.py --config-name=chordmixer_finetuning dataset=DATASET_CONFIG_NAME

Pretraining

Pretraining can be initiated using the following command:

python train.py --config-name=CONFIG_NAME

About

Self-Supervised Pretraining Pipeline for ChordMixer

Topics

Resources

Stars

Watchers

Forks