Skip to content

Commit

Permalink
Backport of Added Tensorflow model REST protocol test on triton for K…
Browse files Browse the repository at this point in the history
…serve (#1846) (#2113)

Added Tensorflow model REST protocol test on triton for Kserve (#1846)
  • Loading branch information
Raghul-M authored Dec 10, 2024
1 parent 1f91b2f commit aab4916
Show file tree
Hide file tree
Showing 7 changed files with 164 additions and 18 deletions.

Large diffs are not rendered by default.

Large diffs are not rendered by default.

Original file line number Diff line number Diff line change
@@ -0,0 +1,54 @@
apiVersion: serving.kserve.io/v1alpha1
kind: ServingRuntime
metadata:
name: triton-kserve-rest
spec:
annotations:
prometheus.kserve.io/path: /metrics
prometheus.kserve.io/port: "8002"
containers:
- args:
- tritonserver
- --model-store=/mnt/models
- --grpc-port=9000
- --http-port=8080
- --allow-grpc=true
- --allow-http=true
image: nvcr.io/nvidia/tritonserver:23.05-py3
name: kserve-container
resources:
limits:
cpu: "1"
memory: 2Gi
requests:
cpu: "1"
memory: 2Gi
ports:
- containerPort: 8080
protocol: TCP
protocolVersions:
- v2
- grpc-v2
supportedModelFormats:
- autoSelect: true
name: tensorrt
priority: 1
version: "8"
- autoSelect: true
name: tensorflow
priority: 1
version: "1"
- autoSelect: true
name: tensorflow
priority: 1
version: "2"
- autoSelect: true
name: onnx
priority: 1
version: "1"
- name: pytorch
version: "1"
- autoSelect: true
name: triton
priority: 1
version: "2"
Original file line number Diff line number Diff line change
Expand Up @@ -226,6 +226,7 @@ Get Model Serving Access Token via UI
ELSE
SeleniumLibrary.Wait Until Page Contains Element xpath://td[@data-label="Tokens"]/button
SeleniumLibrary.Click Element xpath://td[@data-label="Tokens"]/button
Log ${service_account_name}
${token}= SeleniumLibrary.Get Element Attribute
... xpath://div[.="${service_account_name}"]/../../td[@data-label="Token Secret"]//span/input value
END
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -292,14 +292,18 @@ Get Model Inference
... set to ${TRUE}.
[Arguments] ${model_name} ${inference_input} ${token_auth}=${FALSE} ${project_title}=${NONE}
... ${kserve_mode}=Serverless ${deployment_mode}=UI ${service_port}=8888 ${end_point}=${NONE}
... ${service_account_name}=default-name ${token}=${NONE}
... ${service_account_name}=default-name ${token}=${NONE} ${set_json_content_type}=${FALSE}
${curl_cmd}= Set Variable ${NONE}
${self_managed}= Is RHODS Self-Managed
IF $deployment_mode == 'UI'
${url}= Get Model Route Via UI ${model_name}
${kserve}= Run Keyword And Return Status SeleniumLibrary.Page Should Contain
... Single-model serving enabled
${curl_cmd}= Set Variable curl -s ${url} -d ${inference_input}
IF ${set_json_content_type}
${curl_cmd}= Catenate ${curl_cmd} -H 'Content-Type: application/json'
END
Log ${curl_cmd}
IF ${token_auth}
IF "${project_title}" == "${NONE}"
${project_title}= Get Model Project ${model_name}
Expand All @@ -310,12 +314,15 @@ Get Model Inference
END
${curl_cmd}= Catenate ${curl_cmd} -H "Authorization: Bearer ${token}"
END
Log ${curl_cmd}
IF ${kserve}
Fetch Knative CA Certificate filename=openshift_ca_istio_knative.crt
${curl_cmd}= Catenate ${curl_cmd} --cacert openshift_ca_istio_knative.crt
Log ${curl_cmd}
ELSE IF ${self_managed}
Fetch Openshift CA Bundle
${curl_cmd}= Catenate ${curl_cmd} --cacert openshift_ca.crt
Log ${curl_cmd}
END
ELSE IF $deployment_mode == 'Cli'
${rc} ${cmd_op}= Run And Return Rc And Output
Expand Down Expand Up @@ -355,15 +362,15 @@ Verify Model Inference
[Documentation] Verifies that the inference result of a model is equal to an expected output
[Arguments] ${model_name} ${inference_input} ${expected_inference_output} ${token_auth}=${FALSE}
... ${project_title}=${NONE} ${deployment_mode}=UI ${kserve_mode}=Serverless
... ${service_port}=${NONE} ${end_point}=${NONE} ${token}=${NONE}
... ${service_port}=${NONE} ${end_point}=${NONE} ${token}=${NONE} ${set_json_content_type}=${FALSE}
IF $deployment_mode == 'UI'
Open Model Serving Home Page
Switch Model Serving Project ${project_title}
END
${inference_output}= Get Model Inference model_name=${model_name} inference_input=${inference_input}
... token_auth=${token_auth} kserve_mode=${kserve_mode} project_title=${project_title}
... deployment_mode=${deployment_mode} service_port=${service_port} end_point=${end_point}
... token=${token} # robocop: disable
... token=${token} set_json_content_type=${set_json_content_type} # robocop: disable
Log ${inference_output}
${result} ${list}= Inference Comparison ${expected_inference_output} ${inference_output}
Log ${result}
Expand All @@ -385,9 +392,10 @@ Verify Model Inference With Retries
... This is a temporary mitigation meanwhile we find a better way to check the model
[Arguments] ${model_name} ${inference_input} ${expected_inference_output} ${token_auth}=${FALSE}
... ${project_title}=${NONE} ${retries}=${5} ${deployment_mode}=UI ${kserve_mode}=Serverless
... ${service_port}=${NONE} ${end_point}=${NONE}
... ${service_port}=${NONE} ${end_point}=${NONE} ${set_json_content_type}=${FALSE}
${status}= Run Keyword And Return Status Verify Model Inference ${model_name} ${inference_input}
... ${expected_inference_output} ${token_auth} ${project_title} ${deployment_mode}
... set_json_content_type=${set_json_content_type}
IF not ${status}
${retry}= Set Variable ${0}
WHILE ${retry} < ${retries}
Expand All @@ -398,7 +406,7 @@ Verify Model Inference With Retries
${status}= Run Keyword And Return Status Verify Model Inference
... ${model_name} ${inference_input} ${expected_inference_output} ${token_auth}
... project_title=${project_title} deployment_mode=${deployment_mode} kserve_mode=${kserve_mode}
... service_port=${service_port} end_point=${end_point}
... service_port=${service_port} end_point=${end_point} set_json_content_type=${set_json_content_type}
IF ${status}
BREAK
END
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -36,9 +36,14 @@ ${ONNX_RUNTIME_FILEPATH}= ${RESOURCES_DIRPATH}/triton_onnx_rest_servingruntim
${EXPECTED_INFERENCE_REST_OUTPUT_FILE}= tests/Resources/Files/triton/kserve-triton-onnx-rest-output.json
${INFERENCE_REST_INPUT_PYTORCH}= @tests/Resources/Files/triton/kserve-triton-resnet-rest-input.json
${PYTORCH_MODEL_NAME}= resnet50
${TENSORFLOW_MODEL_NAME}= inception_graphdef
${TENSORFLOW_MODEL_LABEL}= inceptiongraphdef
${PYTORCH_RUNTIME_NAME}= triton-kserve-rest
${PYTORCH_RUNTIME_FILEPATH}= ${RESOURCES_DIRPATH}/triton_onnx_rest_servingruntime.yaml
${EXPECTED_INFERENCE_REST_OUTPUT_FILE_PYTORCH}= tests/Resources/Files/triton/kserve-triton-resnet-rest-output.json
${INFERENCE_REST_INPUT_TENSORFLOW}= @tests/Resources/Files/triton/kserve-triton-tensorflow-rest-input.json
${TENSORFLOW_RUNTIME_FILEPATH}= ${RESOURCES_DIRPATH}/triton_tensorflow_rest_servingruntime.yaml
${EXPECTED_INFERENCE_REST_OUTPUT_FILE_TENSORFLOW}= tests/Resources/Files/triton/kserve-triton-tensorflow-rest-output.json
${INFERENCE_GRPC_INPUT_TENSORFLOW}= tests/Resources/Files/triton/kserve-triton-inception_graphdef-gRPC-input.json
${TENSORFLOW_MODEL_NAME}= inception_graphdef
${TENSORFLOW_MODEL_LABEL}= inceptiongraphdef
Expand Down Expand Up @@ -100,10 +105,9 @@ Test Onnx Model Rest Inference Via UI (Triton on Kserve) # robocop: off=too-l
... AND
... Delete Serving Runtime Template From CLI displayed_name=triton-kserve-rest


Test PYTORCH Model Inference Via UI(Triton on Kserve)
Test PYTORCH Model Rest Inference Via UI(Triton on Kserve)
[Documentation] Test the deployment of an pytorch model in Kserve using Triton
[Tags] Sanity RHOAIENG-11561
[Tags] Tier2 RHOAIENG-11561
Open Data Science Projects Home Page
Create Data Science Project title=${PRJ_TITLE} description=${PRJ_DESCRIPTION}
Expand Down Expand Up @@ -135,7 +139,7 @@ Test PYTORCH Model Inference Via UI(Triton on Kserve)

Test Onnx Model Grpc Inference Via UI (Triton on Kserve) # robocop: off=too-long-test-case
[Documentation] Test the deployment of an onnx model in Kserve using Triton
[Tags] Sanity RHOAIENG-9053
[Tags] Tier2 RHOAIENG-9053
Open Data Science Projects Home Page
Create Data Science Project title=${PRJ_TITLE} description=${PRJ_DESCRIPTION}
... existing_project=${FALSE}
Expand Down Expand Up @@ -181,7 +185,7 @@ Test Onnx Model Grpc Inference Via UI (Triton on Kserve) # robocop: off=too-l

Test Tensorflow Model Grpc Inference Via UI (Triton on Kserve) # robocop: off=too-long-test-case
[Documentation] Test the deployment of an tensorflow model in Kserve using Triton
[Tags] Sanity RHOAIENG-9052
[Tags] Tier2 RHOAIENG-9052
Open Data Science Projects Home Page
Create Data Science Project title=${PRJ_TITLE} description=${PRJ_DESCRIPTION}
... existing_project=${FALSE}
Expand Down Expand Up @@ -224,9 +228,10 @@ Test Tensorflow Model Grpc Inference Via UI (Triton on Kserve) # robocop: off
... AND
... Delete Serving Runtime Template From CLI displayed_name=triton-tensorflow-grpc

Test KERAS Model Inference Via UI(Triton on Kserve)

Test KERAS Model Rest Inference Via UI(Triton on Kserve)
[Documentation] Test the deployment of an keras model in Kserve using Triton
[Tags] Sanity RHOAIENG-10328
[Tags] Tier2 RHOAIENG-10328
Open Data Science Projects Home Page
Create Data Science Project title=${PRJ_TITLE} description=${PRJ_DESCRIPTION}
Expand All @@ -248,14 +253,58 @@ Test KERAS Model Inference Via UI(Triton on Kserve)
Log ${EXPECTED_INFERENCE_REST_OUTPUT_KERAS}
Run Keyword And Continue On Failure Verify Model Inference With Retries
... ${KERAS_MODEL_NAME} ${INFERENCE_REST_INPUT_KERAS} ${EXPECTED_INFERENCE_REST_OUTPUT_KERAS}
... token_auth=${FALSE} project_title=${PRJ_TITLE}
... token_auth=${FALSE} project_title=${PRJ_TITLE} set_json_content_type=${TRUE}
[Teardown] Run Keywords Get Kserve Events And Logs model_name=${KERAS_MODEL_NAME}
... project_title=${PRJ_TITLE}
... AND
... Clean All Models Of Current User
... AND
... Delete Serving Runtime Template From CLI displayed_name=triton-keras-rest

Test KERAS Model Grpc Inference Via UI (Triton on Kserve) # robocop: off=too-long-test-case
[Documentation] Test the deployment of an keras model in Kserve using Triton
[Tags] Tier2 RHOAIENG-10327
Open Data Science Projects Home Page
Create Data Science Project title=${PRJ_TITLE} description=${PRJ_DESCRIPTION}
... existing_project=${FALSE}
Open Dashboard Settings settings_page=Serving runtimes
Upload Serving Runtime Template runtime_filepath=${KERAS_GRPC_RUNTIME_FILEPATH}
... serving_platform=single runtime_protocol=gRPC
Serving Runtime Template Should Be Listed displayed_name=${KERAS_RUNTIME_NAME_GRPC}
... serving_platform=single
Recreate S3 Data Connection project_title=${PRJ_TITLE} dc_name=model-serving-connection
... aws_access_key=${S3.AWS_ACCESS_KEY_ID} aws_secret_access=${S3.AWS_SECRET_ACCESS_KEY}
... aws_bucket_name=ods-ci-s3
Deploy Kserve Model Via UI model_name=${PYTORCH_MODEL_NAME} serving_runtime=triton-keras-grpc
... data_connection=model-serving-connection path=tritonkeras/model_repository/ model_framework=tensorflow - 2
... token=${TRUE}
Wait For Pods To Be Ready label_selector=serving.kserve.io/inferenceservice=${PYTORCH_MODEL_NAME}
... namespace=${PRJ_TITLE}
${EXPECTED_INFERENCE_GRPC_OUTPUT_KERAS}= Load Json File file_path=${EXPECTED_INFERENCE_GRPC_OUTPUT_FILE_KERAS}
... as_string=${TRUE}
${EXPECTED_INFERENCE_GRPC_OUTPUT_KERAS}= Load Json String ${EXPECTED_INFERENCE_GRPC_OUTPUT_KERAS}
${EXPECTED_INFERENCE_GRPC_OUTPUT_KERAS}= Evaluate json.dumps(${EXPECTED_INFERENCE_GRPC_OUTPUT_KERAS})
Log ${EXPECTED_INFERENCE_GRPC_OUTPUT_KERAS}
Open Model Serving Home Page
${host_url}= Get Model Route Via UI model_name=${PYTORCH_MODEL_NAME}
${host}= Evaluate re.search(r"${PATTERN}", r"${host_url}").group(1) re
Log ${host}
${token}= Get Access Token Via UI single_model=${TRUE} model_name=resnet50 project_name=${PRJ_TITLE}
${inference_output}= Query Model With GRPCURL host=${host} port=443
... endpoint=inference.GRPCInferenceService/ModelInfer
... json_body=@ input_filepath=${INFERENCE_GRPC_INPUT_KERAS}
... insecure=${True} protobuf_file=${PROTOBUFF_FILE} json_header="Authorization: Bearer ${token}"
Log ${inference_output}
${inference_output}= Evaluate json.dumps(${inference_output})
Log ${inference_output}
${result} ${list}= Inference Comparison ${EXPECTED_INFERENCE_GRPC_OUTPUT_KERAS} ${inference_output}
[Teardown] Run Keywords Get Kserve Events And Logs model_name=${PYTORCH_MODEL_NAME}
... project_title=${PRJ_TITLE}
... AND
... Clean All Models Of Current User
... AND
... Delete Serving Runtime Template From CLI displayed_name=triton-keras-grpc

Test Python Model Grpc Inference Via UI (Triton on Kserve) # robocop: off=too-long-test-case
[Documentation] Test the deployment of an python model in Kserve using Triton
[Tags] Tier2 RHOAIENG-15374
Expand Down Expand Up @@ -334,7 +383,7 @@ Test Python Model Rest Inference Via UI (Triton on Kserve) # robocop: off=too

Test FIL Model Rest Inference Via UI (Triton on Kserve) # robocop: off=too-long-test-case
[Documentation] Test the deployment of an fil model in Kserve using Triton
[Tags] Sanity RHOAIENG-15649
[Tags] Tier2 RHOAIENG-15649
Open Data Science Projects Home Page
Create Data Science Project title=${PRJ_TITLE} description=${PRJ_DESCRIPTION}
... existing_project=${FALSE}
Expand All @@ -361,7 +410,8 @@ Test FIL Model Rest Inference Via UI (Triton on Kserve) # robocop: off=too-lo
... Clean All Models Of Current User
... AND
... Delete Serving Runtime Template From CLI displayed_name=triton-kserve-rest



Test FIL Model Grpc Inference Via UI (Triton on Kserve) # robocop: off=too-long-test-case
[Documentation] Test the deployment of an fil model in Kserve using Triton
[Tags] Sanity RHOAIENG-15823
Expand Down Expand Up @@ -406,6 +456,37 @@ Test FIL Model Grpc Inference Via UI (Triton on Kserve) # robocop: off=too-lo
... AND
... Delete Serving Runtime Template From CLI displayed_name=triton-kserve-grpc

Test Tensorflow Model Rest Inference Via UI (Triton on Kserve) # robocop: off=too-long-test-case
[Documentation] Test the deployment of an tensorflow model in Kserve using Triton
[Tags] Tier2 RHOAIENG-11568
Open Data Science Projects Home Page
Create Data Science Project title=${PRJ_TITLE} description=${PRJ_DESCRIPTION}
... existing_project=${FALSE}
Open Dashboard Settings settings_page=Serving runtimes
Upload Serving Runtime Template runtime_filepath=${TENSORFLOW_RUNTIME_FILEPATH}
... serving_platform=single runtime_protocol=REST
Serving Runtime Template Should Be Listed displayed_name=${PYTORCH_RUNTIME_NAME}
... serving_platform=single
Recreate S3 Data Connection project_title=${PRJ_TITLE} dc_name=model-serving-connection
... aws_access_key=${S3.AWS_ACCESS_KEY_ID} aws_secret_access=${S3.AWS_SECRET_ACCESS_KEY}
... aws_bucket_name=ods-ci-s3
Deploy Kserve Model Via UI model_name=${TENSORFLOW_MODEL_NAME} serving_runtime=triton-kserve-rest
... data_connection=model-serving-connection path=triton/model_repository/
... model_framework=tensorflow - 2 token=${TRUE}
Wait For Pods To Be Ready label_selector=serving.kserve.io/inferenceservice=${TENSORFLOW_MODEL_LABEL}
... namespace=${PRJ_TITLE}
${EXPECTED_INFERENCE_REST_OUTPUT_TENSORFLOW}= Load Json File file_path=${EXPECTED_INFERENCE_REST_OUTPUT_FILE_TENSORFLOW}
... as_string=${TRUE}
Run Keyword And Continue On Failure Verify Model Inference With Retries
... ${TENSORFLOW_MODEL_NAME} ${INFERENCE_REST_INPUT_TENSORFLOW} ${EXPECTED_INFERENCE_REST_OUTPUT_TENSORFLOW}
... token_auth=${TRUE} project_title=${PRJ_TITLE} set_json_content_type=${TRUE}
[Teardown] Run Keywords Get Kserve Events And Logs model_name=${TENSORFLOW_MODEL_NAME}
... project_title=${PRJ_TITLE}
... AND
... Clean All Models Of Current User
... AND
... Delete Serving Runtime Template From CLI displayed_name=triton-kserve-rest


*** Keywords ***
Triton On Kserve Suite Setup
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -81,7 +81,7 @@ Test Onnx Model Rest Inference Via UI (Triton on Modelmesh)

Test Pytorch Model Rest Inference Via UI (Triton on Modelmesh)
[Documentation] Test the deployment of an onnx model in Kserve using Triton
[Tags] Sanity RHOAIENG-11561
[Tags] Tier2 RHOAIENG-11561
Open Data Science Projects Home Page
Create Data Science Project title=${PRJ_TITLE} description=${PRJ_DESCRIPTION}
Expand Down Expand Up @@ -120,7 +120,7 @@ Test Pytorch Model Rest Inference Via UI (Triton on Modelmesh)

Test Tensorflow Model Rest Inference Via UI (Triton on Modelmesh)
[Documentation] Test the deployment of an onnx model in Kserve using Triton
[Tags] Sanity RHOAIENG-9069
[Tags] Tier2 RHOAIENG-9069
Open Data Science Projects Home Page
Create Data Science Project title=${PRJ_TITLE} description=${PRJ_DESCRIPTION}
Expand Down Expand Up @@ -156,7 +156,7 @@ Test Tensorflow Model Rest Inference Via UI (Triton on Modelmesh)

Test Python Model Rest Inference Via UI (Triton on Modelmesh)
[Documentation] Test the deployment of an python model in Kserve using Triton
[Tags] Sanity RHOAIENG-11564
[Tags] Tier2 RHOAIENG-11564
Open Data Science Projects Home Page
Create Data Science Project title=${PRJ_TITLE} description=${PRJ_DESCRIPTION}
Expand Down

0 comments on commit aab4916

Please sign in to comment.