Skip to content

Commit

Permalink
Update README
Browse files Browse the repository at this point in the history
  • Loading branch information
malvads committed Jan 26, 2024
1 parent 91470d3 commit e0d63f7
Showing 1 changed file with 3 additions and 9 deletions.
12 changes: 3 additions & 9 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -13,24 +13,18 @@ Main package to install redborder ai outliers in Centos7

#### Platforms

- Centos 7
- Rocky Linux 9

#### Installation
## Installation

1. yum install epel-release && yum install centos-release-scl && rpm -ivh http://repo.redborder.com/redborder-repo-0.0.3-1.el7.rb.noarch.rpm
1. yum install epel-release && rpm -ivh http://repo.redborder.com/redborder-repo-0.0.3-1.el7.rb.noarch.rpm

2. yum install rb-aioutliers

## Model design
Initially, data is extracted from a designated druid datasource in timeseries format, with configurable metrics and settings. After rescaling from zero to one and segmentation, an autoencoder reconstructs the data, enabling anomaly detection through k-sigma thresholding.
The anomalies are outputed in Json format together with the data reconstructed by the autoencoder.

If you cannot see the image probably you are outside of the redborder organization, probably in the future we will release this...

See [#23](https://github.com/redBorder/rb-aioutliers/pull/23)

![img](https://lh3.googleusercontent.com/fife/AK0iWDwRKtXzeZRyn9412b9OHio5ZiiiIM_Xjr33XQ0tQ-jNQDBWnzWvUweMe_ZmmDwxC2QCCNcjjC0T9NqupTZTlUMMGmd7lqitlhhhOJgfvJs2U0o2lQ2w76kt4DCk0Go4QNku-xN-1FxAePOFKGx4jdaKD9hAfBQwhLSD6dNoJl29DcZgb8C9tjWekjvBeXo_treEXwK0Ts2TaKfhHngtov641fXM42b-5qLpBt_0ARgARUKtI0mwquEe5QaeJiXqQzGWBhdWOCuI-52IZt_7TT11ksYhxCdSQFSqyBhZoRXtMJ23h1EnQeyT_tVjetXCVfe3TNgM5pWCKPdr0wKRv6P_QgfTXnukmk-lmuRSwD4IkSllCOD6COnlGrbJZCFjIzm6_hq-o8PY3o9wuT2aw0a9QvUx7FbrTZJg2bSh-pnRRSLskOHJhgd5-vn5PkHvUskKiP4ZveW32nMEDstiqxKuf2cvnFuXCFzhSHy0AQGnQHvQ2obIlyHqVObHH9x9ve50zNG7wVBtAWEmCgkxM0DPt1j9UIpiwFQ_Qz3sEGyGggrn1HYYcQsMJsW64FTuEuzCiEP9IL0dSQVWGE6B9BLR2hu47P9nZNGN2RQYLusqi05jGVxbg7vBTGSZDiLlxxFLak8DGYf0ohQhjfVbfGw1m_td74x3d6d23GWilscYyJAPQdC46W5ddRaKJWirsaZElPuiMnevCA6v-ctnNVcNn1IKDd1nMWISCVt8CzPLfss0JGnHqELz1Og_LrNl-iYYjzB5TxajeQ5sz5xLkmSVnzhQZOAo5VHr0vE256Z36Rk5a7OvpWG4Nl8U4SoYsuDI7V6Fv-wLSlVkGGZ8imYDpw6wtcp365-OzsWoRfHWWHQ9V56yfkTz_ZuG0aVA8nQpmMBop396uQMctFjgVDgrW529QhYUuo9yv6rLaWcuhjBAfxW31qEExNLnzMkJlld8v-VNAyJc7qKuT1JpUVvUTAOn1dYtHxO85iL9wga-WUOcV27FaBeklFQv3FQz8K2yiEqoltVCr14HHj--F61pSm1HC0TOwZ2x3JcI-o9QmXWh_kZ9VCCCycGhiODnLM5YwcsM-vY8uCtk4mng2_2XejdFA2RL_vKNFkQeSX_fpoZab0ekT4-UCMPFYGdh--L_se-GfJJF8Px1xtLFl9C6HcT7EsNj7WYn7lxBzSZ-IUZKA4w1st4oBIPGPGvX9_MROwPRZNHmWxYbZ0zk2OVT-iyb6GseZ1V_OBLmln0nIqDVtxW2u32Bgi38Y0jwqXc_UfQnpLzL7i0_ePaGAakS4zdbx_HwVGlru5yUyArsx9-s4fLJAwCrswmBWXO8odCFO16qPNhWTtkVTFRDWzC3v3G18LKqSoLfai0qq1zzGie06cOA2bNe9YHWxn5efVsrtez0kiRMb5Ro7gGRIt2OYMp39VfIje7aXOetmfc1Z-CT_gcKdEQpMQGBELo0xUE_qgbmTZwj7_qgG1TjPCeVUudVD0Xb5fO5r8x_L9Xv1i81WffPnSjEhy9axM_JG7QYvJ_IC0qhhVrTe7EyFmtktYADftkTSbKFif8l-BGWqucPQw04yIH44A=w1107-h975)

## Model execution
rb-aioutliers utilizes the Flask framework to create an HTTP server. Users can send Druid queries via POST requests to the /calculate endpoint. When rb-aioutliers receives the Druid query, it sends a request to the Druid broker, retrieves the necessary data, and then proceeds to execute the anomaly detection model.

Expand Down

0 comments on commit e0d63f7

Please sign in to comment.