This project combines OpenAI's Whisper for accurate speech-to-text transcription with LangChain's powerful language processing capabilities to create meaningful summaries of YouTube video content.
demo.mp4
- 🎥 Multi-video Support: Process multiple YouTube videos simultaneously
- 📝 Smart Summarization: Get concise summaries of video content
- 💬 Interactive Chat: Ask questions about any of the processed videos
- 📜 Full Transcripts: Access complete transcripts of all videos
- ⚡ Fast Processing: Efficient parallel processing of videos
- 🔄 Video Management: Add or remove videos dynamically
- 📋 Copy Functionality: Easy copying of summaries and transcripts
- Video Processing: The system downloads YouTube videos and transcribes them using OpenAI's Whisper
- Summarization: AI generates concise summaries of the video content
- Interactive Chat: Ask questions about any video - the AI combines information from all processed videos
- Management: Add or remove videos anytime through the sidebar
VideoMind-AI/
├── src/ # Source code
│ ├── transcriber.py # Handles video transcription using Whisper
│ ├── summarizer.py # Manages text summarization with LangChain
│ └── utils.py # Utility functions
│ └── chat.py # Handles chat with AI
├── app.py # Main Streamlit application
├── .gitignore # Git ignore file
├── requirements.txt # Project dependencies
├── README.md # Project documentation
└── LICENSE # MIT License
- OpenAI's Whisper - For speech-to-text transcription
- LangChain - For AI chat and summarization
- Streamlit - For the web interface
- FFmpeg - For audio processing
- Python 3.7+
- OpenAI API key
- FFmpeg
- Required Python packages (see requirements.txt)
- Clone the repository:
git clone https://github.com/riyanshibohra/VideoMind-AI.git
cd VideoMind-AI- Create and activate a virtual environment:
python -m venv venv
source venv/bin/activate # On Windows: venv\Scripts\activate- Install the required dependencies:
pip install -r requirements.txt- Set up environment variables:
Create a
.envfile in the project root with the following:
OPENAI_API_KEY=your_api_key_here
- Start the Streamlit application:
streamlit run app.py-
Open your web browser and navigate to the provided local URL (typically http://localhost:8501)
-
Enter YouTube video URLs:
- Add a single video URL in the sidebar
- Or paste multiple URLs in the main interface
- Click "Process Videos" to start analysis
-
Explore the features:
- View summaries in the "Summaries" tab
- Chat with AI about the videos in the "Chat" tab
- Access full transcripts in the "Transcripts" tab
- Manage videos through the sidebar
This project is licensed under the MIT License.