Skip to content

robotVisionHang/BlastScoringNet

Repository files navigation

BlastScoringNet

Source code for our paper entitled 'An interpretable artificial intelligence approach to differentiate between blastocysts with similar or same morphological grades.'

Dowload the pretrained model at https://drive.google.com/file/d/15rJip2UT_fRoXl-P9J1_5ZVR9W7vBa6Z/view?usp=sharing

Required library

  1. Pytorch with cuda (>2.0): https://pytorch.org/
  2. OpenCV-Python (>3.0): https://github.com/opencv/opencv-python
  3. Pytorch Image Models: https://github.com/huggingface/pytorch-image-models
  4. Python Imaging Library: https://github.com/python-pillow/Pillow
  5. Progress Bar for Python: https://github.com/tqdm/tqdm
  6. Scikit-learn: https://scikit-learn.org/stable/install.html#installation-instructions
  7. Pandas: https://github.com/pandas-dev/pandas

Test pretrained BlastScoringNet

Use Test.py to test pretrained BlastScoringNet on example images of blastocysts in Figures 1, 3, and 4 in the paper.

Pretrained model and hyperparameters for fine-tuning (load backbone encoder and then fine-tune all params)

  1. Download pretrained BlastScoringNet model from https://drive.google.com/file/d/15rJip2UT_fRoXl-P9J1_5ZVR9W7vBa6Z/view?usp=sharing
  2. Pytorch AdamW hyper_parameters= {'batch_size': 9, 'lr': 4.73345487439063e-05, 'weight_decay': 0.507309243983485, 'image_size': 300 }

About

GardnerNet

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages