This repository hosts the code for the paper "FAIRLANE: A multi-agent approach to priority lane management in diverse traffic composition".
If you found any part of this repository useful for your work, please cite our paper:
@article{dubery2024fairlane,
title = {{FAIRLANE}: A multi-agent approach to priority lane management in diverse traffic composition},
volume = {171},
DOI = {10.1016/j.trc.2024.104919},
journal = {Transportation Research Part C: Emerging Technologies},
publisher = {Elsevier BV},
author = {Dubey, Rohit K. and Dailisan, Damian and Argota Sánchez–Vaquerizo, Javier and Helbing, Dirk},
year = {2025},
pages = {104919}
}
- Create a python virtual env
python -m venv sumo
Note that sumo here can be replaced with any venv name of your choosing.
- Activate the venv
source activate sumo/bin/activate
- Install packages
pip install -r requirements.txt
mkdir results
- Define
SUMO_HOME
to your bashrc file. If you are using a different shell, edit this accordingly. If you choose to install sumo via other means, also change theSUMO_HOME
location.
echo 'export SUMO_HOME=$(python -m site --user-site)/sumo' >> ~/.bashrc
export SUMO_HOME=$(python -m site --user-site)/sumo
- Train the model using
python train.py # trains the MADDPG model
python run_mappo.py --option train # trains the MAPPO model
- Run all of the ablation tests using
python run_tests.py
NOTE: You must repeat step 2 when running code.