Skip to content
/ PaleoVeg Public

Python package for paleovegetation reconstruction

License

Notifications You must be signed in to change notification settings

roink/PaleoVeg

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

17 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

DOI GitHub Org


PaleoVeg

PaleoVeg is a Python package for predicting vegetation types based on bioclimatic variables. It is designed for paleovegetation reconstruction, allowing users to model vegetation based on past climate data or other environmental predictors.


Features

  • Predict vegetation types for single or multiple locations using bioclimatic variables.
  • Apply optional C3/C4 competition corrections for higher CO2 levels.
  • Flexible output options:
    • Probabilities for each vegetation type.
    • Dominant vegetation type.
  • Supports input as:
    • Pandas DataFrames for tabular data.
    • Numpy arrays for map-like (grid-based) data.

Predicted Vegetation/Biome Types

PaleoVeg predicts the following vegetation/biome types:

  1. Evergreen Needleleaf Forest
  2. Evergreen Broadleaf Forest
  3. Deciduous Needleleaf Forest
  4. Deciduous Broadleaf Forest
  5. Mixed Forest
  6. Woodland
  7. Wooded Grassland
  8. Closed Shrubland
  9. Open Shrubland
  10. Grassland
  11. Bare Ground

Installation

  1. Clone the repository:

    git clone https://github.com/roink/PaleoVeg.git
    cd PaleoVeg
  2. Install the package:

    pip install .

Usage

1. Import the Package

from paleoveg import predict, predict_map

2. Predict Using Tabular Data

Input Data

Provide a Pandas DataFrame with the following required columns:

bio1, bio4, bio5, bio6, bio7, bio8, bio9, bio10, bio11, bio12, bio13, bio14, bio15, bio16, bio17, bio18, bio19

Example

import pandas as pd
from paleoveg import predict

# Example input DataFrame
data = {
    "bio1": [10.2, 12.5],
    "bio4": [15.6, 14.1],
    "bio5": [20.1, 18.4],
    "bio6": [5.3, 7.2],
    "bio7": [14.8, 16.5],
    "bio8": [12.4, 11.8],
    "bio9": [9.7, 8.9],
    "bio10": [8.5, 9.2],
    "bio11": [7.9, 6.5],
    "bio12": [300.5, 310.2],
    "bio13": [100.2, 102.4],
    "bio14": [150.4, 148.3],
    "bio15": [180.6, 175.9],
    "bio16": [170.3, 165.2],
    "bio17": [160.9, 155.8],
    "bio18": [140.7, 145.4],
    "bio19": [130.8, 128.7],
}

df = pd.DataFrame(data)

# Predict probabilities
probabilities = predict(df, dominant="exclude", c3_c4_correction=False)

# Predict dominant vegetation type
dominant_class = predict(df, dominant="only", c3_c4_correction=True)

# Include probabilities and dominant type
result = predict(df, dominant="include", c3_c4_correction=True)

3. Predict Using Map-Like Data

Input Data

Provide a Numpy array with shape (m, n, 17) where:

  • m and n represent the grid dimensions.
  • 17 represents the bioclimatic variables in the required order.

Example

import numpy as np
from paleoveg import predict_map

# Example 3D data: m = 5, n = 5, 17 predictors
m, n = 5, 5
data = np.random.rand(m, n, 17)

# Predict probabilities (m x n x 11)
probabilities_map = predict_map(data, dominant="exclude", c3_c4_correction=False)

# Predict dominant type (m x n x 1)
dominant_map = predict_map(data, dominant="only", c3_c4_correction=True)

Functions

1. predict(input_df, dominant="exclude", c3_c4_correction=False)

Predict vegetation types for tabular data.

Parameters:

  • input_df (pd.DataFrame): Input DataFrame with 17 bioclimatic variables.
  • dominant (str): Specifies the output format.
    • "exclude": Returns probabilities for each vegetation type.
    • "include": Returns probabilities and the dominant type.
    • "only": Returns only the dominant type.
  • c3_c4_correction (bool): If True, applies C3/C4 competition correction.

Returns:

  • Pandas DataFrame: Probabilities and/or dominant type based on dominant.

2. predict_map(data, dominant="exclude", c3_c4_correction=False)

Predict vegetation types for 3D map-like data.

Parameters:

  • data (np.ndarray): Input Numpy array with shape (m, n, 17).
  • dominant (str): Specifies the output format.
    • "exclude": Returns probabilities (m x n x 11).
    • "only": Returns the dominant type (m x n x 1).
  • c3_c4_correction (bool): If True, applies C3/C4 competition correction.

Returns:

  • Numpy array: Probabilities or dominant type based on dominant.

C3/C4 Competition Factors

When c3_c4_correction=True, the following factors are applied to adjust probabilities for higher CO2 levels:

Vegetation Type Competition Factor
Evergreen Needleleaf Forest 0.28
Evergreen Broadleaf Forest 0.73
Deciduous Needleleaf Forest 0.20
Deciduous Broadleaf Forest 0.76
Mixed Forest 1.00
Closed Shrubland 1.66
Open Shrubland 1.66
Woodland 1.62
Wooded Grassland 1.62
Grassland 1.69
Bare Ground 1.15

License

This project is licensed under the MIT License.


Contributing

Contributions are welcome! Please submit a pull request or open an issue if you have suggestions or find bugs.