Skip to content

ruchith696/cnn-for-hand-sign-recognition

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

12 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Hand Sign recognition using CNN

The goal of this project is, given a hand sign image, predict the digit shown in image. The preview of image follows:

Quick start:

  • clone or download the repository and run signs.py
    signs.py

Outline

  1. create basic functions
  2. build a model using basic function's
  3. running the model to predict

Basic functions:

  1. load data : using h5py module data is being loaded
  2. intitializing parameters : xavier intialisation
  3. create placeholder: useful during running of model
  4. feed forward propagation: CONV2D -> RELU -> MAXPOOL -> CONV2D -> RELU -> MAXPOOL -> FLATTEN -> FULLYCONNECTED (architecture of CNN)
  5. computing cost : softmax entropy loss
  6. random mini batches : creates random mini batches for training
  7. one hot vector : to convert the labels into categorial ( as shown in above image)

Model :

  • input : training data, testing data, learning rate, num epochs, mini batch size

  • ouput(after running the model) : training accuracy, testing accuracy, plot showing the cost function value after each epoch

Results:

  • Train Accuracy: 0.98333335
  • Test Accuracy: 0.8833333

About

No description or website provided.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages