The goal of this project is, given a hand sign image, predict the digit shown in image. The preview of image follows:
- clone or download the repository and run signs.py
signs.py
- create basic functions
- build a model using basic function's
- running the model to predict
- load data : using h5py module data is being loaded
- intitializing parameters : xavier intialisation
- create placeholder: useful during running of model
- feed forward propagation: CONV2D -> RELU -> MAXPOOL -> CONV2D -> RELU -> MAXPOOL -> FLATTEN -> FULLYCONNECTED (architecture of CNN)
- computing cost : softmax entropy loss
- random mini batches : creates random mini batches for training
- one hot vector : to convert the labels into categorial ( as shown in above image)
-
input : training data, testing data, learning rate, num epochs, mini batch size
-
ouput(after running the model) : training accuracy, testing accuracy, plot showing the cost function value after each epoch
- Train Accuracy: 0.98333335
- Test Accuracy: 0.8833333