Semantic search and document parsing tools for the command line
A collection of high-performance CLI tools for document processing and semantic search, built with Rust for speed and reliability.
parse
- Parse documents (PDF, DOCX, etc.) using, by default, the LlamaParse API into markdown formatsearch
- Local semantic keyword search using multilingual embeddings with cosine similarity matching and per-line context matchingworkspace
- Workspace management for accelerating search over large collections
NOTE: By default, parse
uses LlamaParse as a backend. Get your API key today for free at https://cloud.llamaindex.ai. search
remains local-only.
- Fast semantic search using model2vec embeddings from minishlab/potion-multilingual-128M
- Reliable document parsing with caching and error handling
- Unix-friendly design with proper stdin/stdout handling
- Configurable distance thresholds and returned chunk sizes
- Multi-format support for parsing documents (PDF, DOCX, PPTX, etc.)
- Concurrent processing for better parsing performance
- Workspace management for efficient document retrieval over large collections
Prerequisites:
- For the
parse
tool: LlamaIndex Cloud API key
Install:
You can install semtools
via npm:
npm i -g @llamaindex/semtools
Or via cargo:
# install entire crate
cargo install semtools
# install only parse
cargo install semtools --no-default-features --features=parse
# install only search
cargo install semtools --no-default-features --features=search
Note: Installing from npm builds the Rust binaries locally during install if a prebuilt binary is not available, which requires Rust and Cargo to be available in your environment. Install from rustup
if needed: https://www.rust-lang.org/tools/install
.
Basic Usage:
# Parse some files
parse my_dir/*.pdf
# Search some (text-based) files
search "some keywords" *.txt --max-distance 0.3 --n-lines 5
# Combine parsing and search
parse my_docs/*.pdf | xargs search "API endpoints"
Advanced Usage:
# Combine with grep for exact-match pre-filtering and distance thresholding
parse *.pdf | xargs cat | grep -i "error" | search "network error" --max-distance 0.3
# Pipeline with content search (note the 'cat')
find . -name "*.md" | xargs parse | xargs search "installation"
# Combine with grep for filtering (grep could be before or after parse/search!)
parse docs/*.pdf | xargs search "API" | grep -A5 "authentication"
# Save search results
parse report.pdf | xargs cat | search "summary" > results.txt
Using Workspaces:
# Create or select a workspace
# Workspaces are stored in ~/.semtools/workspaces/
workspace use my-workspace
> Workspace 'my-workspace' configured.
> To activate it, run:
> export SEMTOOLS_WORKSPACE=my-workspace
>
> Or add this to your shell profile (.bashrc, .zshrc, etc.)
# Activate the workspace
export SEMTOOLS_WORKSPACE=my-workspace
# All search commands will now use the workspace for caching embeddings
# The initial command is used to initialize the workspace
search "some keywords" ./some_large_dir/*.txt --n-lines 5 --top-k 10
# If documents change, they are automatically re-embedded and cached
echo "some new content" > ./some_large_dir/some_file.txt
search "some keywords" ./some_large_dir/*.txt --n-lines 5 --top-k 10
# If documents are removed, you can run prune to clean up stale files
workspace prune
# You can see the stats of a workspace at any time
workspace status
> Active workspace: arxiv
> Root: /Users/loganmarkewich/.semtools/workspaces/arxiv
> Documents: 3000
> Index: Yes (IVF_PQ)
$ parse --help
A CLI tool for parsing documents using various backends
Usage: parse [OPTIONS] <FILES>...
Arguments:
<FILES>... Files to parse
Options:
-c, --parse-config <PARSE_CONFIG> Path to the config file. Defaults to ~/.parse_config.json
-b, --backend <BACKEND> The backend type to use for parsing. Defaults to `llama-parse` [default: llama-parse]
-v, --verbose Verbose output while parsing
-h, --help Print help
-V, --version Print version
$ search --help
A CLI tool for fast semantic keyword search
Usage: search [OPTIONS] <QUERY> [FILES]...
Arguments:
<QUERY> Query to search for (positional argument)
[FILES]... Files or directories to search
Options:
-n, --n-lines <N_LINES> How many lines before/after to return as context [default: 3]
--top-k <TOP_K> The top-k files or texts to return (ignored if max_distance is set) [default: 3]
-m, --max-distance <MAX_DISTANCE> Return all results with distance below this threshold (0.0+)
-i, --ignore-case Perform case-insensitive search (default is false)
-h, --help Print help
-V, --version Print version
$ workspace --help
Manage semtools workspaces
Usage: workspace <COMMAND>
Commands:
use Use or create a workspace (prints export command to run)
status Show active workspace and basic stats
prune Remove stale or missing files from store
help Print this message or the help of the given subcommand(s)
Options:
-h, --help Print help
-V, --version Print version
By default, the parse
tool uses the LlamaParse API to parse documents.
It will look for a ~/.parse_config.json
file to configure the API key and other parameters.
Otherwise, it will fallback to looking for a LLAMA_CLOUD_API_KEY
environment variable and a set of default parameters.
To configure the parse
tool, create a ~/.parse_config.json
file with the following content (defaults are shown below):
{
"api_key": "your_llama_cloud_api_key_here",
"num_ongoing_requests": 10,
"base_url": "https://api.cloud.llamaindex.ai",
"check_interval": 5,
"max_timeout": 3600,
"max_retries": 10,
"retry_delay_ms": 1000,
"backoff_multiplier": 2.0,
"parse_kwargs": {
"parse_mode": "parse_page_with_agent",
"model": "openai-gpt-4-1-mini",
"high_res_ocr": "true",
"adaptive_long_table": "true",
"outlined_table_extraction": "true",
"output_tables_as_HTML": "true"
}
}
Or just set via environment variable:
export LLAMA_CLOUD_API_KEY="your_api_key_here"
- More parsing backends (something local-only would be great!)
- Improved search algorithms
- (optional) Persistence for speedups on repeat searches on the same files
We welcome contributions! Please see CONTRIBUTING.md for guidelines.
This project is licensed under the MIT License - see the LICENSE file for details.
- LlamaIndex/LlamaParse for document parsing capabilities
- model2vec-rsfor fast embedding generation
- minishlab/potion-multilingual-128M for an amazing default static embedding model
- simsimd for efficient similarity computation