Skip to content

run-llama/semtools

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

SemTools

Semantic search and document parsing tools for the command line

A collection of high-performance CLI tools for document processing and semantic search, built with Rust for speed and reliability.

  • parse - Parse documents (PDF, DOCX, etc.) using, by default, the LlamaParse API into markdown format
  • search - Local semantic keyword search using multilingual embeddings with cosine similarity matching and per-line context matching
  • workspace - Workspace management for accelerating search over large collections

NOTE: By default, parse uses LlamaParse as a backend. Get your API key today for free at https://cloud.llamaindex.ai. search remains local-only.

Key Features

  • Fast semantic search using model2vec embeddings from minishlab/potion-multilingual-128M
  • Reliable document parsing with caching and error handling
  • Unix-friendly design with proper stdin/stdout handling
  • Configurable distance thresholds and returned chunk sizes
  • Multi-format support for parsing documents (PDF, DOCX, PPTX, etc.)
  • Concurrent processing for better parsing performance
  • Workspace management for efficient document retrieval over large collections

Installation

Prerequisites:

  • For the parse tool: LlamaIndex Cloud API key

Install:

You can install semtools via npm:

npm i -g @llamaindex/semtools

Or via cargo:

# install entire crate
cargo install semtools

# install only parse
cargo install semtools --no-default-features --features=parse

# install only search
cargo install semtools --no-default-features --features=search

Note: Installing from npm builds the Rust binaries locally during install if a prebuilt binary is not available, which requires Rust and Cargo to be available in your environment. Install from rustup if needed: https://www.rust-lang.org/tools/install.

Quick Start

Basic Usage:

# Parse some files
parse my_dir/*.pdf

# Search some (text-based) files
search "some keywords" *.txt --max-distance 0.3 --n-lines 5

# Combine parsing and search
parse my_docs/*.pdf | xargs search "API endpoints"

Advanced Usage:

# Combine with grep for exact-match pre-filtering and distance thresholding
parse *.pdf | xargs cat | grep -i "error" | search "network error" --max-distance 0.3

# Pipeline with content search (note the 'cat')
find . -name "*.md" | xargs parse | xargs search "installation"

# Combine with grep for filtering (grep could be before or after parse/search!)
parse docs/*.pdf | xargs search "API" | grep -A5 "authentication"

# Save search results
parse report.pdf | xargs cat | search "summary" > results.txt

Using Workspaces:

# Create or select a workspace
# Workspaces are stored in ~/.semtools/workspaces/
workspace use my-workspace
> Workspace 'my-workspace' configured.
> To activate it, run:
>   export SEMTOOLS_WORKSPACE=my-workspace
> 
> Or add this to your shell profile (.bashrc, .zshrc, etc.)

# Activate the workspace
export SEMTOOLS_WORKSPACE=my-workspace

# All search commands will now use the workspace for caching embeddings
# The initial command is used to initialize the workspace
search "some keywords" ./some_large_dir/*.txt --n-lines 5 --top-k 10

# If documents change, they are automatically re-embedded and cached
echo "some new content" > ./some_large_dir/some_file.txt
search "some keywords" ./some_large_dir/*.txt --n-lines 5 --top-k 10

# If documents are removed, you can run prune to clean up stale files
workspace prune

# You can see the stats of a workspace at any time
workspace status
> Active workspace: arxiv
> Root: /Users/loganmarkewich/.semtools/workspaces/arxiv
> Documents: 3000
> Index: Yes (IVF_PQ)

CLI Help

$ parse --help
A CLI tool for parsing documents using various backends

Usage: parse [OPTIONS] <FILES>...

Arguments:
  <FILES>...  Files to parse

Options:
  -c, --parse-config <PARSE_CONFIG>  Path to the config file. Defaults to ~/.parse_config.json
  -b, --backend <BACKEND>            The backend type to use for parsing. Defaults to `llama-parse` [default: llama-parse]
  -v, --verbose                      Verbose output while parsing
  -h, --help                         Print help
  -V, --version                      Print version
$ search --help
A CLI tool for fast semantic keyword search

Usage: search [OPTIONS] <QUERY> [FILES]...

Arguments:
  <QUERY>     Query to search for (positional argument)
  [FILES]...  Files or directories to search

Options:
  -n, --n-lines <N_LINES>            How many lines before/after to return as context [default: 3]
      --top-k <TOP_K>                The top-k files or texts to return (ignored if max_distance is set) [default: 3]
  -m, --max-distance <MAX_DISTANCE>  Return all results with distance below this threshold (0.0+)
  -i, --ignore-case                  Perform case-insensitive search (default is false)
  -h, --help                         Print help
  -V, --version                      Print version
$ workspace --help
Manage semtools workspaces

Usage: workspace <COMMAND>

Commands:
  use     Use or create a workspace (prints export command to run)
  status  Show active workspace and basic stats
  prune   Remove stale or missing files from store
  help    Print this message or the help of the given subcommand(s)

Options:
  -h, --help     Print help
  -V, --version  Print version

Configuration

Parse Tool Configuration

By default, the parse tool uses the LlamaParse API to parse documents.

It will look for a ~/.parse_config.json file to configure the API key and other parameters.

Otherwise, it will fallback to looking for a LLAMA_CLOUD_API_KEY environment variable and a set of default parameters.

To configure the parse tool, create a ~/.parse_config.json file with the following content (defaults are shown below):

{
  "api_key": "your_llama_cloud_api_key_here",
  "num_ongoing_requests": 10,
  "base_url": "https://api.cloud.llamaindex.ai",
  "check_interval": 5,
  "max_timeout": 3600,
  "max_retries": 10,
  "retry_delay_ms": 1000,
  "backoff_multiplier": 2.0,
  "parse_kwargs": {
    "parse_mode": "parse_page_with_agent",
    "model": "openai-gpt-4-1-mini",
    "high_res_ocr": "true",
    "adaptive_long_table": "true",
    "outlined_table_extraction": "true",
    "output_tables_as_HTML": "true"
  }
}

Or just set via environment variable:

export LLAMA_CLOUD_API_KEY="your_api_key_here"

Agent Use Case Examples

Future Work

  • More parsing backends (something local-only would be great!)
  • Improved search algorithms
  • (optional) Persistence for speedups on repeat searches on the same files

Contributing

We welcome contributions! Please see CONTRIBUTING.md for guidelines.

License

This project is licensed under the MIT License - see the LICENSE file for details.

Acknowledgments