forked from rohanrohan2012/Face-Mask-Recognition
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
c41c361
commit ccc5777
Showing
2 changed files
with
136 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,62 @@ | ||
import os | ||
import sys | ||
from cv2 import cv2 | ||
import json | ||
import numpy as np | ||
import tensorflow as tf | ||
|
||
MODEL_PATH =os.path.join(os.getcwd(),'mask_classifier.h5') | ||
MODEL_PATH2 =os.path.join(os.getcwd(),'mask.json') | ||
|
||
json_file=open(MODEL_PATH2,'r') | ||
loaded_model_json=json_file.read() | ||
json_file.close() | ||
|
||
model=tf.keras.models.model_from_json(loaded_model_json) | ||
model.load_weights(MODEL_PATH) | ||
|
||
cascPath="haarcascade_frontalface_default.xml" | ||
faceCascade=cv2.CascadeClassifier(cascPath) | ||
video_capture=cv2.VideoCapture(0) | ||
video_capture.set(cv2.CAP_PROP_FRAME_WIDTH,640) | ||
video_capture.set(cv2.CAP_PROP_FRAME_HEIGHT,480) | ||
|
||
|
||
while True: | ||
ret,frame=video_capture.read() | ||
if frame is not None: | ||
gray=cv2.cvtColor(frame,cv2.COLOR_BGR2GRAY) | ||
|
||
image=cv2.resize(frame,(64,64)) | ||
image=np.array(image,dtype='float32')/255.0 | ||
image=np.expand_dims(image,axis=0) | ||
pred=model.predict(image) | ||
#pred=np.amax(pred,axis=1) | ||
print(pred) | ||
if np.argmax(pred)==1: | ||
text='no mask' | ||
else: | ||
text='mask' | ||
|
||
faces=faceCascade.detectMultiScale( | ||
gray, | ||
scaleFactor=1.1, | ||
minNeighbors=5, | ||
minSize=(30,30), | ||
#flags=cv2.CV_HAAR_SCALE_IMAGE | ||
) | ||
|
||
for (x,y,w,h) in faces: | ||
cv2.rectangle(frame,(x,y),(x+w,y+h),(255,0,0),2) | ||
|
||
cv2.putText(frame , text , (x , y) , cv2.FONT_HERSHEY_SIMPLEX , 0.45 , (255,255,255), 2) | ||
cv2.imshow('Video', frame) | ||
|
||
if cv2.waitKey(1) & 0xFF == ord('q'): | ||
break | ||
|
||
# When everything is done, release the capture | ||
video_capture.release() | ||
cv2.destroyAllWindows() | ||
|
||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,74 @@ | ||
from cv2 import cv2 | ||
import os | ||
import numpy as np | ||
import tensorflow as tf | ||
import json | ||
from tensorflow.keras.applications.mobilenet_v2 import preprocess_input | ||
from tensorflow.keras.preprocessing.image import img_to_array | ||
|
||
video = cv2.VideoCapture(0) | ||
path_model=os.path.join(os.getcwd(),'res10_300x300_ssd_iter_140000.caffemodel') | ||
path_protxt=os.path.join(os.getcwd(),'deploy.prototxt.txt') | ||
video.set(cv2.CAP_PROP_FRAME_WIDTH,640) | ||
video.set(cv2.CAP_PROP_FRAME_HEIGHT,480) | ||
net = cv2.dnn.readNetFromCaffe(path_protxt ,path_model) | ||
|
||
MODEL_PATH =os.path.join(os.getcwd(),'model3.h5') | ||
MODEL_PATH2 =os.path.join(os.getcwd(),'model3.json') | ||
|
||
json_file=open(MODEL_PATH2,'r') | ||
loaded_model_json=json_file.read() | ||
json_file.close() | ||
|
||
model=tf.keras.models.model_from_json(loaded_model_json) | ||
model.load_weights(MODEL_PATH) | ||
|
||
conf = 0.70 | ||
no_conf = 1.99 | ||
|
||
while True: | ||
check, frame = video.read() | ||
blob = cv2.dnn.blobFromImage(cv2.resize(frame,(300,300)), 1.0 ,(300,300) ,(104.0, 177.0, 123.0)) | ||
(h,w) = frame.shape[:2] | ||
counter=0 | ||
net.setInput(blob) | ||
detections = net.forward() | ||
|
||
for i2 in range(0 , detections.shape[2]): | ||
confidence = detections[0,0,i2,2] | ||
|
||
if (confidence > conf) and (confidence < no_conf) : | ||
box = detections[0,0,i2,3:7]*np.array([w,h,w,h]) | ||
(startX , startY , endX , endY) = box.astype("int") | ||
(startX, startY) = (max(0, startX),max(0, startY)) | ||
(endX, endY) = min(w - 1, endX), min(h - 1, endY) | ||
|
||
face = frame[startY:endY, startX:endX] | ||
face = cv2.cvtColor(face, cv2.COLOR_BGR2RGB) | ||
face = cv2.resize(face, (224, 224)) | ||
face = img_to_array(face) | ||
face = preprocess_input(face) | ||
face = np.expand_dims(face, axis=0) | ||
|
||
(mask, withoutMask) = model.predict(face)[0] | ||
print(mask,withoutMask) | ||
if mask < withoutMask: | ||
label="Mask" | ||
color=(0,255,0) | ||
else : | ||
label="No Mask" | ||
color=(0,0,255) | ||
|
||
|
||
label = "{}: {:.2f}%".format(label, max(mask, withoutMask) * 100) | ||
cv2.rectangle(frame , (startX , startY) , (endX,endY) , color , 2) | ||
cv2.putText(frame , label , (startX , startY) , cv2.FONT_HERSHEY_SIMPLEX , 0.45 , (255,255,255), 2) | ||
|
||
cv2.imshow('Video window', frame) | ||
|
||
# press 'q' on keyboard to exit | ||
if cv2.waitKey(1) & 0xFF == ord('q'): | ||
break | ||
|
||
video.release() | ||
cv2.destroyAllWindows() |