-
Notifications
You must be signed in to change notification settings - Fork 0
/
distros.py
146 lines (114 loc) · 3.5 KB
/
distros.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
# BSD 3-Clause License
#
# Copyright (c) 2024, S.A. Gilchrist
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
# Numpy
import numpy as np
def log_likelihood_gaussian(x,mu,sigma):
"""
Compute log likelihood for Gaussian
Parameters:
-----------
x: (N,)
Data points
mu: float
Location parameter
sigma: float
Scale parameter
Returns:
-------
logZ: float
Log likelihood
"""
# Number of sample points
N = len(x)
# Normalization factor
t0 = -0.5*np.log(2*np.pi)
# Term1: -log(sig)
t1 = -np.log(sigma)
# Term2:
t2 = (x-mu)**2
t2 = -0.5*t2.sum()/sigma**2
# Complete output
logZ = N*t0 + N*t1 + t2
return logZ
# ---------------------------------------------------------------------
def log_lognormal_likelihood(x,mu,sigma):
"""
Power law
Parameters:
-----------
x: (N,)
Data
mu: float
Location parameter
sigma: float
Scale parameter
"""
# Total number of data points
N = len(x)
# Term ind. of x
A = -.5*N*np.log(2*np.pi) - N*np.log(sigma)
# Inverse half variance 1/(2*sigma^2)
ivar = .5/sigma**2
# Build vector of values
Lx = np.log(x)
vec = -Lx - ivar*(Lx-mu)**2
# Compute sum
logL = A + vec.sum()
return logL
# ---------------------------------------------------------------------
def uprior_uniform(u,x1,x2):
"""
Return sample from uniform prior with range [x1,x2)
"""
return u*(x2-x1) + x1
# ---------------------------------------------------------------------
def uprior_jefferys(u,x1,x2):
"""
Return sample from truncated Jeffery's prior:
p(x)dx = A * dx/x,
where
A = 1/log(x2/x1),
and p(x) = 0 outside [x1,x2].
Stats:
mean(x) = (x2-x1)/log(x2/x1)
median(x) = sqrt(x2*x1)
Parameters:
-----------
u: (N,)
Uniform random variate in range
x1: float
Lower bound
x2: float
Upper bound
Returns:
--------
x: (N,)
Sample from truncated Jeffery's prior
"""
return x1*np.exp(u*np.log(x2/x1))