-
Notifications
You must be signed in to change notification settings - Fork 300
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
6 changed files
with
287 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,175 @@ | ||
# | ||
# Copyright (c) 2024 salesforce.com, inc. | ||
# All rights reserved. | ||
# SPDX-License-Identifier: BSD-3-Clause | ||
# For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause | ||
# | ||
""" | ||
The classic LocalOutlierFactor model for anomaly detection. | ||
""" | ||
import logging | ||
|
||
import numpy as np | ||
import pandas as pd | ||
from sklearn.neighbors import LocalOutlierFactor | ||
|
||
from merlion.models.anomaly.base import DetectorConfig, DetectorBase | ||
from merlion.transform.moving_average import DifferenceTransform | ||
from merlion.transform.sequence import TransformSequence | ||
from merlion.transform.resample import Shingle | ||
|
||
logger = logging.getLogger(__name__) | ||
|
||
|
||
class LOFConfig(DetectorConfig): | ||
""" | ||
Configuration class for `LocalOutlierFactor`. | ||
""" | ||
|
||
_default_transform = TransformSequence([DifferenceTransform(), Shingle(size=2, stride=1)]) | ||
|
||
def __init__( | ||
self, | ||
n_neighbors=20, | ||
algorithm="auto", | ||
leaf_size=30, | ||
metric="minkowski", | ||
p=2, | ||
metric_params=None, | ||
contamination=0.1, | ||
n_jobs=1, | ||
novelty=True, | ||
**kwargs | ||
): | ||
""" | ||
n_neighbors : int, optional (default=20) | ||
Number of neighbors to use by default for `kneighbors` queries. | ||
If n_neighbors is larger than the number of samples provided, | ||
all samples will be used. | ||
algorithm : {'auto', 'ball_tree', 'kd_tree', 'brute'}, optional | ||
Algorithm used to compute the nearest neighbors: | ||
- 'ball_tree' will use BallTree | ||
- 'kd_tree' will use KDTree | ||
- 'brute' will use a brute-force search. | ||
- 'auto' will attempt to decide the most appropriate algorithm | ||
based on the values passed to :meth:`fit` method. | ||
Note: fitting on sparse input will override the setting of | ||
this parameter, using brute force. | ||
leaf_size : int, optional (default=30) | ||
Leaf size passed to `BallTree` or `KDTree`. This can | ||
affect the speed of the construction and query, as well as the memory | ||
required to store the tree. The optimal value depends on the | ||
nature of the problem. | ||
metric : string or callable, default 'minkowski' | ||
metric used for the distance computation. Any metric from scikit-learn | ||
or scipy.spatial.distance can be used. | ||
If 'precomputed', the training input X is expected to be a distance | ||
matrix. | ||
If metric is a callable function, it is called on each | ||
pair of instances (rows) and the resulting value recorded. The callable | ||
should take two arrays as input and return one value indicating the | ||
distance between them. This works for Scipy's metrics, but is less | ||
efficient than passing the metric name as a string. | ||
Valid values for metric are: | ||
- from scikit-learn: ['cityblock', 'cosine', 'euclidean', 'l1', 'l2', | ||
'manhattan'] | ||
- from scipy.spatial.distance: ['braycurtis', 'canberra', 'chebyshev', | ||
'correlation', 'dice', 'hamming', 'jaccard', 'kulsinski', | ||
'mahalanobis', 'matching', 'minkowski', 'rogerstanimoto', | ||
'russellrao', 'seuclidean', 'sokalmichener', 'sokalsneath', | ||
'sqeuclidean', 'yule'] | ||
See the documentation for scipy.spatial.distance for details on these | ||
metrics: | ||
http://docs.scipy.org/doc/scipy/reference/spatial.distance.html | ||
p : integer, optional (default = 2) | ||
Parameter for the Minkowski metric from | ||
sklearn.metrics.pairwise.pairwise_distances. When p = 1, this is | ||
equivalent to using manhattan_distance (l1), and euclidean_distance | ||
(l2) for p = 2. For arbitrary p, minkowski_distance (l_p) is used. | ||
See http://scikit-learn.org/stable/modules/generated/sklearn.metrics.pairwise.pairwise_distances | ||
metric_params : dict, optional (default = None) | ||
Additional keyword arguments for the metric function. | ||
contamination : float in (0., 0.5), optional (default=0.1) | ||
The amount of contamination of the data set, i.e. the proportion | ||
of outliers in the data set. When fitting this is used to define the | ||
threshold on the decision function. | ||
n_jobs : int, optional (default = 1) | ||
The number of parallel jobs to run for neighbors search. | ||
If ``-1``, then the number of jobs is set to the number of CPU cores. | ||
Affects only kneighbors and kneighbors_graph methods. | ||
novelty : bool (default=False) | ||
By default, LocalOutlierFactor is only meant to be used for outlier | ||
detection (novelty=False). Set novelty to True if you want to use | ||
LocalOutlierFactor for novelty detection. In this case be aware that | ||
that you should only use predict, decision_function and score_samples | ||
on new unseen data and not on the training set. | ||
""" | ||
self.contamination = contamination | ||
self.n_neighbors = n_neighbors | ||
self.algorithm = algorithm | ||
self.leaf_size = leaf_size | ||
self.metric = metric | ||
self.p = p | ||
self.metric_params = metric_params | ||
self.n_jobs = n_jobs | ||
self.novelty = novelty | ||
# Expect the max_score be overridden in the calibrator function | ||
kwargs["max_score"] = 1.0 | ||
super().__init__(**kwargs) | ||
|
||
|
||
class LOF(DetectorBase): | ||
""" | ||
The classic LocalOutlierFactor sklearn implementation. | ||
""" | ||
|
||
config_class = LOFConfig | ||
|
||
def __init__(self, config: LOFConfig): | ||
super().__init__(config) | ||
self.model = LocalOutlierFactor( | ||
n_neighbors=config.n_neighbors, | ||
algorithm=config.algorithm, | ||
leaf_size=config.leaf_size, | ||
metric=config.metric, | ||
p=config.p, | ||
metric_params=config.metric_params, | ||
contamination=config.contamination, | ||
n_jobs=config.n_jobs, | ||
novelty=config.novelty, | ||
) | ||
|
||
@property | ||
def require_even_sampling(self) -> bool: | ||
return False | ||
|
||
@property | ||
def require_univariate(self) -> bool: | ||
return False | ||
|
||
def _train(self, train_data: pd.DataFrame, train_config=None) -> pd.DataFrame: | ||
times, train_values = train_data.index, train_data.values | ||
self.model.fit(train_values) | ||
train_scores = -self.model.score_samples(train_values) | ||
return pd.DataFrame(train_scores, index=times, columns=["anom_score"]) | ||
|
||
def _get_anomaly_score(self, time_series: pd.DataFrame, time_series_prev: pd.DataFrame = None) -> pd.DataFrame: | ||
# Return the negative of model's score, since model scores are in [-1, 0), where more negative = more anomalous | ||
scores = -self.model.score_samples(np.array(time_series.values)) | ||
return pd.DataFrame(scores, index=time_series.index) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,93 @@ | ||
# | ||
# Copyright (c) 2023 salesforce.com, inc. | ||
# All rights reserved. | ||
# SPDX-License-Identifier: BSD-3-Clause | ||
# For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause | ||
# | ||
import logging | ||
from os.path import abspath, dirname, join | ||
import sys | ||
import unittest | ||
|
||
import numpy as np | ||
|
||
from merlion.models.anomaly.lof import LOF, LOFConfig | ||
from merlion.transform.moving_average import MovingAverage, ExponentialMovingAverage | ||
from merlion.transform.resample import Shingle | ||
from merlion.transform.sequence import TransformSequence | ||
from merlion.post_process.threshold import AggregateAlarms | ||
from merlion.utils.data_io import csv_to_time_series | ||
|
||
rootdir = dirname(dirname(dirname(abspath(__file__)))) | ||
logger = logging.getLogger(__name__) | ||
|
||
|
||
class TestLOF(unittest.TestCase): | ||
def __init__(self, *args, **kwargs): | ||
super().__init__(*args, **kwargs) | ||
self.csv_name = join(rootdir, "data", "example.csv") | ||
self.test_len = 32768 | ||
self.data = csv_to_time_series(self.csv_name, timestamp_unit="ms", data_cols=["kpi"]) | ||
logger.info(f"Data looks like:\n{self.data[:5]}") | ||
self.vals_train = self.data[: -self.test_len] | ||
self.vals_test = self.data[-self.test_len :] | ||
|
||
# You probably wouldn't use this transform in practice, but we use it | ||
# here to test ExponentialMovingAverage and MovingAverage on | ||
# multi-variate time series | ||
self.model = LOF( | ||
LOFConfig( | ||
threshold=AggregateAlarms(alm_threshold=3.5), | ||
transform=TransformSequence( | ||
[ | ||
Shingle(size=5, stride=1), | ||
ExponentialMovingAverage(alpha=0.9, normalize=True), | ||
MovingAverage(weights=[0.1, 0.2, 0.3, 0.4]), | ||
] | ||
) | ||
) | ||
) | ||
print() | ||
logger.info("Training model...\n") | ||
self.model.train(self.vals_train, post_rule_train_config={"unsup_quantile": 0.999}) | ||
|
||
def test_score(self): | ||
# score function returns the raw anomaly scores | ||
print("-" * 80) | ||
logger.info("test_score\n" + "-" * 80 + "\n") | ||
scores = self.model.get_anomaly_score(self.vals_test) | ||
logger.info(f"Scores look like:\n{scores[:5]}") | ||
scores = scores.to_pd().values.flatten() | ||
logger.info("max score = " + str(max(scores))) | ||
logger.info("min score = " + str(min(scores)) + "\n") | ||
|
||
def test_alarm(self): | ||
# alarm function returns the post-rule processed anomaly scores | ||
print("-" * 80) | ||
logger.info("test_alarm\n" + "-" * 80 + "\n") | ||
alarms = self.model.get_anomaly_label(self.vals_test) | ||
n_alarms = np.sum(alarms.to_pd().values != 0) | ||
logger.info(f"Alarms look like:\n{alarms[:5]}") | ||
logger.info(f"Number of alarms: {n_alarms}\n") | ||
self.assertLess(n_alarms, 17) | ||
|
||
def test_save_load(self): | ||
print("-" * 80) | ||
logger.info("test_save_load\n" + "-" * 80 + "\n") | ||
self.model.save(dirname=join(rootdir, "tmp", "lof")) | ||
loaded_model = LOF.load(dirname=join(rootdir, "tmp", "lof")) | ||
|
||
scores = self.model.get_anomaly_score(self.vals_test) | ||
loaded_model_scores = loaded_model.get_anomaly_score(self.vals_test) | ||
self.assertSequenceEqual(list(scores), list(loaded_model_scores)) | ||
|
||
alarms = self.model.get_anomaly_label(self.vals_test) | ||
loaded_model_alarms = loaded_model.get_anomaly_label(self.vals_test) | ||
self.assertSequenceEqual(list(alarms), list(loaded_model_alarms)) | ||
|
||
|
||
if __name__ == "__main__": | ||
logging.basicConfig( | ||
format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s", stream=sys.stdout, level=logging.DEBUG | ||
) | ||
unittest.main() |