Skip to content

A high-performance 1D quantum tunneling solver using split-operator Fourier method with absorbing boundary conditions and Numba acceleration for simulating electron tunneling through potential barriers with proper probability conservation.

License

Notifications You must be signed in to change notification settings

sandyherho/1d-qt-ideal-solver

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

29 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

1d-qt-ideal-solver: 1D Quantum Tunneling Solver

DOI Python License: MIT Numba PyPI

High-performance 1D quantum tunneling solver with absorbing boundary conditions. Implements split-operator Fourier method with Numba acceleration.

Physics

Solves the time-dependent Schrödinger equation:

$i\hbar\frac{\partial \psi}{\partial t} = \hat{H}\psi = \left[-\frac{\hbar^2}{2m}\nabla^2 + V(x,t)\right]\psi$

In natural units ($\hbar = 1$, $m = 1$), this simplifies to:

$i\frac{\partial \psi}{\partial t} = \left[-\frac{1}{2}\nabla^2 + V(x,t)\right]\psi$

Split-operator evolution with absorbing boundaries:

$\psi(x, t+\delta t) = \mathcal{M}_{\text{abs}} \cdot e^{-iV\delta t/2} \cdot \mathcal{F}^{-1}\left[e^{-ik^2\delta t/2}\mathcal{F}[\psi]\right] \cdot e^{-iV\delta t/2}$

Absorbing mask (cos⁴ profile):

$\mathcal{M}(x) = \begin{cases} 1 - s\left[1 - \cos^4\left(\frac{\pi i}{2n_b}\right)\right] & \text{left boundary} \ 1 & \text{safe zone} \ 1 - s\left[1 - \cos^4\left(\frac{\pi(N-i)}{2n_b}\right)\right] & \text{right boundary} \end{cases}$

Natural Units Convention:

  • ℏ = 1 (reduced Planck constant)
  • Electron mass m_e = 1
  • Energy in eV, length in nm, time in fs

Observables:

  • Transmission coefficient: T
  • Reflection coefficient: R
  • Absorbed probability: A
  • Conservation: T + R + A ≈ 1

Features

  • Absorbing boundary conditions prevent spurious reflections
  • Adaptive time stepping
  • Numba JIT compilation
  • Stochastic environments with noise and decoherence
  • Visualization with zone highlighting
  • NetCDF4 output

Installation

# From PyPI
pip install 1d-qt-ideal-solver

# From source
git clone https://github.com/sandyherho/1d-qt-ideal-solver.git
cd 1d-qt-ideal-solver
pip install -e .

Quick Start

Command line:

# Run single case
qt1d-simulate case1

# Run both cases
qt1d-simulate --all

# Custom parameters
qt1d-simulate case1 --boundary-width 3.0 --cores 8

Python API:

from qt1d_ideal import QuantumTunneling1D, GaussianWavePacket

# Initialize solver
solver = QuantumTunneling1D(
    nx=2048, 
    x_min=-30.0,
    x_max=30.0,
    boundary_width=3.0,
    boundary_strength=0.03
)

# Create initial wavepacket
psi0 = GaussianWavePacket(x0=-8.0, k0=4.0, sigma=0.8)(solver.x)

# Define barrier
V = solver.rectangular_barrier(height=4.5, width=1.0)

# Solve
result = solver.solve(psi0=psi0, V=V, t_final=6.0, n_snapshots=200)

# Results
T = result['transmission_coefficient']
R = result['reflection_coefficient']
A = result['absorbed_probability']
print(f"T = {T:.4f}, R = {R:.4f}, A = {A:.4f}, T+R+A = {T+R+A:.4f}")

Test Cases

Case Barrier Type Height Width Domain
1 Rectangular 4.5 eV 1.0 nm ±30 nm
2 Gaussian 4.0 eV 0.8 nm ±30 nm

Configuration

Key parameters (see configs/ for examples):

# Spatial grid
nx = 2048
x_min = -30.0
x_max = 30.0

# Time integration
t_final = 6.0
n_snapshots = 200

# Absorbing boundaries
boundary_width = 3.0
boundary_strength = 0.03

# Environment
noise_amplitude = 0.0
decoherence_rate = 0.0

Output

Generated files:

  • outputs/*.nc - NetCDF4 with wavefunction data
  • outputs/*.gif - Animated visualization
  • logs/*.log - Simulation diagnostics

Reading NetCDF data:

import netCDF4 as nc

data = nc.Dataset('outputs/case1_rectangular_barrier.nc')
x = data['x'][:]
t = data['t'][:]
psi_real = data['psi_real'][:, :]
psi_imag = data['psi_imag'][:, :]
probability = data['probability'][:, :]
potential = data['potential'][:]

T = data.transmission
R = data.reflection
A = data.absorbed

Citation

@article{qt1d_solver_2025,
  author = {Herho, Sandy H. S. and Kaban, Siti N. and Anwar, Iwan P. and
             and Trilaksono, Nurjanna J., Suwarman, Rusmawan},
  title = {{\texttt{1d-qt-ideal-solver}: 1D idealized quantum tunneling solver with absorbing boundaries}},
  journal = {xxxx},
  volume = {xxxx},
  pages = {xxxx},
  year = {xxxx},
  doi = {10.5281/xxxxx},
  url = {https://github.com/sandyherho/1d-qt-ideal-solver}
}

Authors

License

MIT License - See LICENSE for details.

About

A high-performance 1D quantum tunneling solver using split-operator Fourier method with absorbing boundary conditions and Numba acceleration for simulating electron tunneling through potential barriers with proper probability conservation.

Topics

Resources

License

Stars

Watchers

Forks

Languages