library("dplyr") library("tseries") library("readxl") library(tidyverse) library(GGally) library(MASS) library(car) library(lmtest) library(olsrr) library(EnvStats)
install.packages("zoo") install.packages("Quandl") install.packages("stargazer") library(Quandl) library(stargazer) library(zoo)
····VERSIÓN UNO····
#IMPORTAR VARIABLES
BTCdata=Quandl("BCHAIN/MKPRU", start_date=as.Date("2000-01-01"), end_date=as.Date("2023-03-22")) BTCdata = BTC[-5193,] colnames(BTCdata)[2] <-"BTC" difficulty = Quandl("BCHAIN/DIFF", start_date=as.Date("2000-01-01"), end_date=as.Date("2023-03-22")) difficulty = difficulty[-c(5193:5194),] hashrate = Quandl("BCHAIN/HRATE", start_date=as.Date("2000-01-01"), end_date=as.Date("2023-03-23")) hashrate = hashrate[-5193,] mirev = Quandl("BCHAIN/MIREV", start_date=as.Date("2000-01-01"), end_date=as.Date("2023-03-23")) mirev = mirev[-c(5193:5194),] avgblock = Quandl("BCHAIN/AVBLS", start_date=as.Date("2000-01-01"), end_date=as.Date("2023-03-23")) avgblock = avgblock[-c(5193:5194),] blockchainsize = Quandl("BCHAIN/BLCHS", start_date=as.Date("2000-01-01"), end_date=as.Date("2023-03-23")) blockchainsize = blockchainsize[-5193,] costpertrans = Quandl("BCHAIN/CPTRA", start_date=as.Date("2000-01-01"), end_date=as.Date("2023-03-23")) costpertrans = costpertrans[-c(5193:5194),] totBTC = Quandl("BCHAIN/TOTBC", start_date=as.Date("2000-01-01"), end_date=as.Date("2023-03-23")) totBTC = totBTC[-5193,] numtransblck = Quandl("BCHAIN/NTRBL", start_date=as.Date("2000-01-01"), end_date=as.Date("2023-03-23")) numtransblck = numtransblck[-5193,] naddu = Quandl("BCHAIN/NADDU", start_date=as.Date("2000-01-01"), end_date=as.Date("2023-03-23")) naddu = naddu[-5193,] mirevPERhash<-as.data.frame(cbind(mirev$Value/hashrate$Value)) colnames(mirevPERhash)<-c("MinerRevenue/Hashrate")
data21=data.frame(Date=c(BTCdata$Date),BTCprice=c(BTCdata$BTC),Difficulty=c(difficulty$Value),Hashrate=c(hashrate$Value),MinerRevenue=c(mirev$Value),AvgBlockSize=c(avgblock$Value),BlockchainSize=c(blockchainsize$Value),CostPerTransaction=c(costpertrans$Value),TotalBitcoins=c(totBTC$Value),TransactionsPerBlock=c(numtransblck$Value),UniqueBitcoinAddysUsed=c(naddu$Value),MinRevPerHash=c(mirevPERhash$MinerRevenue/Hashrate
))
data21.1 = data21[-c(4638:5194),] btccarbon <- read.csv("bitcoincarbon.csv",header = FALSE) data21.2=cbind(data21.1,CarbonEmissions=C(btccarbon$V3))
ESTADÍSTICA DESCRIPTIVA
plot(difficulty, type="l", main="Difficulty", col = "orange") lines(blockchainsize, type="l", col = "orange")
plot(difficulty, BTCdata, type="l", main="Difficulty", col = "orange") plot(log(difficulty$Value),(difficulty$Date),, main="log(Difficulty)") plot(BTCdata, type="l", col = "orange", main = "Bitcoin Price") lines(log(difficulty$Value), type="l", col = "blue") ggplot(data=data21, aes(x=hashrate, y=difficulty))+geom_point() plot(hashrate, type="l", main="Hashrate", col = "orange") plot(log(hashrate$Value)) plot(mirev, type="l", main="Miner Revenue", col = "orange") plot(avgblock, type="l", main="Average Block Size", col = "orange") plot(blockchainsize, type="l", main="Blockchain Size", col = "orange") plot(costpertrans, type="l", main="Cost Per Transaction", col = "orange") plot(totBTC, type="l", main="Total Bitcoins", col = "orange") plot(numtransblck, type="l", main="Transactions Per Block", col = "orange") plot(naddu, type="l", main="Unique BTC Addresses Used", col = "orange") plot(mirevPERhash)
mean(BTCprice, data=data21)
cor(data21$BTCprice, data21$Difficulty) cor(data21$Hashrate, data21$Difficulty) cor(data21$MinerRevenue, data21$Difficulty) cor(data21$AvgBlockSize, data21$Difficulty) cor(data21$BlockchainSize, data21$Difficulty) cor(data21$CostPerTransaction, data21$Difficulty) cor(data21$TotalBitcoins, data21$Difficulty) cor(data21$TransactionsPerBlock, data21$Difficulty) cor(data21$UniqueBitcoinAddysUsed, data21$Difficulty)
cor(data21$MinerRevenue, data21$Hashrate) cor(data21$MinerRevenue, data21$BTCprice) cor(data21$MinerRevenue, data21$Difficulty) cor(data21$MinerRevenue, data21$AvgBlockSize) cor(data21$MinerRevenue, data21$BlockchainSize) cor(data21$MinerRevenue, data21$CostPerTransaction) cor(data21$MinerRevenue, data21$TotalBitcoins) cor(data21$MinerRevenue, data21$TransactionsPerBlock) cor(data21$MinerRevenue, data21$UniqueBitcoinAddysUsed)
ggpairs(data21, columns = c(2,3), aes(color = "Red")) ggpairs(data21, columns = c(4,3), aes(color = "")) ggpairs(data21, columns = c(4:8,3), aes(col = "")) ggpairs(data21, columns = c(3, 2), aes(color = country, alpha = 0.5),upper = list(continuous = wrap("cor", size = 2.5)))
ggplot(data=data21,aes(x=BTCprice,y=Difficulty))+geom_point() ggplot(data=data21,aes(x=Difficulty,y=BTCprice))+geom_point() ggplot(data=data21,aes(x=Hashrate,y=Difficulty))+geom_point() ggplot(data=data21,aes(x=Difficulty,y=MinerRevenue))+geom_point() ggplot(data=data21,aes(x=Hashrate,y=MinerRevenue))+geom_point()
model.data21 <- lm(Difficulty ~ Hashrate + BTCprice + Hashrate + BlockchainSize + AvgBlockSize + CostPerTransaction + TransactionsPerBlock, data=data21) summary(btc_mining4) anova(model.data21)
model.data21 <- lm(Difficulty ~ Hashrate + BTCprice + TransactionsPerBlock, data=data21)
data21.bw <- stepAIC(btc_mining4, trace=TRUE, direction="backward") summary(data21.bw) data21.bw$anova
empty.btc.model <- lm(Difficulty ~ 1, data=data21) horizonte <- formula(Difficulty~BTCprice+Hashrate+TransactionsPerBlock) data21.fw <- stepAIC(empty.btc.model, trace=FALSE, direction="forward", scope=horizonte) data21.fw$anova summary(data21.fw)
data21.sw <- stepAIC(empty.btc.model, trace=FALSE, direction="both", scope=horizonte) data21.sw$anova summary(data21.sw)
lmtest::bptest(btc_mining4) gqtest(model.data21, order.by = ~Hashrate+BTCprice+MinerRevenue+BlockchainSize+AvgBlockSize, data = data21, fraction = 150)
durbinWatsonTest(btc_mining4,simulate = TRUE,reps = 1000) dwtest(btc_mining4,alternative ="two.sided",iterations = 1000) dwtest(btc_mining, alternative = "two.sided")
residuales21=as.data.frame(btc_mining4$residuals) colnames(residuales21)=c("Residuales")
ggplot(residuales21, aes(sample = Residuales))+ stat_qq() + stat_qq_line()+ ggtitle("QQ Plot Residuales")+ theme_minimal()+ theme(plot.title = element_text(hjust = 0.5))
ks_norm1<-ks.test(residuales21$Residuales,"pnorm") ks_norm1$p.value
vif(model.data21)
jb_norm<-jarque.bera.test(residuales21$Residuales) jb_norm
anova(btc_mining4) summary(btc_mining4) vif(btc_mining4) data21.1.bw <- stepAIC(btc_mining4, trace=TRUE, direction="backward") summary(data21.1.bw) data21.1.bw$anova
lmtest::bptest(model.wls) gqtest(model.wls, order.by = ~Hashrate+BTCprice+CostPerTransaction, data = data21, fraction = 150)
install.packages("car") library(car)
myweights <- varPower(btc_mining4)
robust_se <- coeftest(btc_mining4, vcov = vcovHC(btc_mining4, type = "HC1")) install.packages("sandwich") # Install the sandwich package library(sandwich) # Load the sandwich package
summary(robust_se)
variance <- residuals(model.data21)^2 weights <- 1/variance model.wls <- lm(Difficulty ~ Hashrate + BTCprice + TransactionsPerBlock, data = data21, weights = weights) bptest(model.wls)
install.packages("orcutt") library(orcutt)
coeftest(cochran.orcutt(model.data21)) cochran.orcutt(model.data21) model.cochran <- cochran.orcutt(btc_mining4)
vcov <- NeweyWest(btc_mining4, lag = 1, prewhite = FALSE, sandwich = TRUE) coef <- coef(btc_mining4) se <- sqrt(diag(vcov)) results <- data.frame(Coefficient = coef, SE = se) print(results) dwtest(btc_mining4, alternative = "two.sided")
btc_mining <- lm(Difficulty ~ Hashrate + BTCprice , data=data21) btc_mining2 <- lm(Difficulty ~ Hashrate, data=data21) btc_mining3 <- lm(Difficulty ~ BTCprice , data=data21) btc_mining4 <- lm(Difficulty ~ Hashrate + BTCprice + TransactionsPerBlock, data = data21)
anova_btcmining<-anova(btc_mining) anova_btcmining anova_btcmining2<-anova(btc_mining2) anova_btcmining2 summ1<- summary(btc_mining) summ1 summ2<- summary(btc_mining2) summ2
miningdata_heteroscedasicidad<-as.data.frame(cbind(btc_mining$fitted.values,btc_mining$residuals)) colnames(miningdata_heteroscedasicidad)<-c("Y_hat","Residuales")
miningdata2_heteroscedasicidad<-as.data.frame(cbind(btc_mining2$fitted.values,btc_mining2$residuals)) colnames(miningdata2_heteroscedasicidad)<-c("Y_hat","Residuales")
ggplot(data=miningdata_heteroscedasicidad)+ geom_point(aes(x=Y_hat,y=Residuales))+ ggtitle("Y_hat vs Residuales")+ theme_minimal()+ theme(plot.title = element_text(hjust = 0.5))
ggplot(data=miningdata2_heteroscedasicidad)+ geom_point(aes(x=Y_hat,y=Residuales))+ ggtitle("Y_hat vs Residuales")+ theme_minimal()+ theme(plot.title = element_text(hjust = 0.5))
sqrt_mse1<-sqrt(anova_btcmining[2,3]) sqrt_mse1 sqrt_mse2<-sqrt(anova_btcmining2[2,3]) sqrt_mse2
base.train21<-sample_frac(data21,.8)
miningdata_ol<-as.data.frame(cbind(data21$Difficulty,btc_mining2$residuals/sqrt_mse2))
colnames(miningdata_ol)<-c("x","errores")
ggplot(data=miningdata_ol)+ geom_point(aes(x=x,y=errores))+ geom_line(aes(x=x,y=-4),col="Red",alpha=.5)+ geom_line(aes(x=x,y=4),col="Red",alpha=.5)+ ggtitle("x vs e/raiz(mse)")+ ylab("e/raiz(mse)")+ theme_minimal()+ theme(plot.title = element_text(hjust = 0.5))
residuales=as.data.frame(btc_mining$residuals) colnames(residuales)=c("Residuales") residuales2=as.data.frame(btc_mining2$residuals) colnames(residuales2)=c("Residuales")
ggplot(residuales, aes(sample = Residuales))+ stat_qq() + stat_qq_line()+ ggtitle("QQ Plot Residuales")+ theme_minimal()+ theme(plot.title = element_text(hjust = 0.5))
ggplot(data=residuales,aes(x=Residuales,y=..density..))+ geom_histogram()+ ggtitle("Histograma Residuales")+ theme_minimal()+ theme(plot.title = element_text(hjust = 0.5))
ks_norm<-ks.test(residuales$Residuales,"pnorm") ks_norm
ggplot(residuales2, aes(sample = Residuales))+ stat_qq() + stat_qq_line()+ ggtitle("QQ Plot Residuales")+ theme_minimal()+ theme(plot.title = element_text(hjust = 0.5))
ggplot(data=residuales2,aes(x=Residuales,y=..density..))+ geom_histogram()+ ggtitle("Histograma Residuales")+ theme_minimal()+ theme(plot.title = element_text(hjust = 0.5))
ks_norm2<-ks.test(residuales2$Residuales,"pnorm") ks_norm2
#Rechazamos ho??
jb_norm<-jarque.bera.test(residuales$Residuales) jb_norm jb_norm2<-jarque.bera.test(residuales2$Residuales) jb_norm2
confianza<-as.data.frame(predict.lm(object=model.data21,newdata=base.train21, interval = "confidence",level=.95)) confianza2<-as.data.frame(predict.lm(object=btc_mining2,newdata=base.train21, interval = "confidence",level=.95))
colnames(confianza)<-c("y_hat","lwr","upr") colnames(confianza2)<-c("y_hat","lwr","upr")
head(confianza) head(confianza2)
base.train3<-as.data.frame(c(base.train21,confianza)) base.train4<-as.data.frame(c(base.train21,confianza2))
head(base.train)
p <- ggplot(base.train3) + geom_point(aes(TransactionsPerBlock, Difficulty)) + geom_line(aes(x=TransactionsPerBlock,y =lwr), color = "red", linetype = "dashed")+ geom_line(aes(x=TransactionsPerBlock,y = upr), color = "red", linetype = "dashed")+ geom_line(aes(x=TransactionsPerBlock,y = y_hat), color = "blue")+ ggtitle("Intervalo de confianza al 95%")+ theme_minimal()+ theme(plot.title = element_text(hjust = 0.5)) p
p00<- ggplot(base.train4) + geom_point(aes(Hashrate, MinerRevenue)) + geom_line(aes(x=Hashrate,y =lwr), color = "red", linetype = "dashed")+ geom_line(aes(x=Hashrate,y = upr), color = "red", linetype = "dashed")+ geom_line(aes(x=Hashrate,y = y_hat), color = "blue")+ ggtitle("Intervalo de confianza al 95%")+ theme_minimal()+ theme(plot.title = element_text(hjust = 0.5)) p00
prediccion<-as.data.frame(predict.lm(object=model.data21,newdata=base.train21, interval = "prediction",level=.95)) colnames(prediccion)<-c("y_hat_pred","lwr_pred","upr_pred") head(prediccion)
base.train5<-as.data.frame(c(base.train4,prediccion))
head(base.train5)
p1 <- ggplot(base.train3) + geom_point(aes(BTCprice, Difficulty)) + geom_line(aes(x=BTCprice,y =lwr), color = "red", linetype = "dashed")+ geom_line(aes(x=BTCprice,y = upr), color = "red", linetype = "dashed")+ geom_line(aes(x=BTCprice,y = y_hat), color = "blue")+ geom_line(aes(x=BTCprice,y =lwr_pred), color = "#FF7F24", linetype = "dashed")+ geom_line(aes(x=BTCprice,y = upr_pred), color = "#FF7F24", linetype = "dashed")+ geom_line(aes(x=BTCprice,y = y_hat_pred), color = "black",, linetype = "dashed")+ ggtitle("Intervalo de predicción y confianza al 95%")+ theme_minimal()+ theme(plot.title = element_text(hjust = 0.5))
p1
base.train.btc<-sample_frac(data21,.8) base.val21<-setdiff(data21,base.train.btc) confianza<-as.data.frame(predict.lm(object=model.data21,newdata=base.val21, interval = "confidence",level=.95))
colnames(confianza)<-c("y_hat","lwr","upr")
head(confianza)
base.val21<-as.data.frame(c(base.val21,confianza))
head(base.val21)
p2 <- ggplot(base.val21) + geom_point(aes(Hashrate, Difficulty)) + geom_line(aes(x=Hashrate,y =lwr), color = "red", linetype = "dashed")+ geom_line(aes(x=Hashrate,y = upr), color = "red", linetype = "dashed")+ geom_line(aes(x=Hashrate,y = y_hat), color = "blue")+ ggtitle("Intervalo de confianza al 95% validación")+ theme_minimal()+ theme(plot.title = element_text(hjust = 0.5)) p2
prediccion<-as.data.frame(predict.lm(object=model.data21,newdata=base.train.btc, interval = "prediction",level=.95))
colnames(prediccion)<-c("y_hat_pred","lwr_pred","upr_pred")
head(prediccion)
base.val21<-as.data.frame(c(base.val,prediccion))
head(base.val)
p3 <- ggplot(base.train5) + geom_point(aes(CostPerTransaction, Difficulty)) + geom_line(aes(x=CostPerTransaction,y =lwr), color = "red", linetype = "dashed")+ geom_line(aes(x=CostPerTransaction,y = upr), color = "red", linetype = "dashed")+ geom_line(aes(x=CostPerTransaction,y = y_hat), color = "blue")+ geom_line(aes(x=CostPerTransaction,y =lwr_pred), color = "#FF7F24", linetype = "dashed")+ geom_line(aes(x=CostPerTransaction,y = upr_pred), color = "#FF7F24", linetype = "dashed")+ geom_line(aes(x=CostPerTransaction,y = y_hat_pred), color = "black",, linetype = "dashed")+ ggtitle("Intervalo de predicción y confianza al 95% validación")+ theme_minimal()+ theme(plot.title = element_text(hjust = 0.5))
p3
plot(hpdata$bedrooms, hpdata$price)
stargazer(btc_mining3, btc_mining2, btc_mining4, type="text")
#Bitcoin Monetary Policy for (i in 0:32) totalsupply <- 210000*(50/2^i) plot(totalsupply)
blockreward <- (50/2^i) plot(blockreward)