generated from saradindusengupta/python_ml_template
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
1886904
commit 798bc31
Showing
1 changed file
with
112 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,112 @@ | ||
2024-02-15 01:50:33,722 ---------------------------------------------------------------------------------------------------- | ||
2024-02-15 01:50:33,724 Model: "TextClassifier( | ||
(embeddings): TransformerDocumentEmbeddings( | ||
(model): DistilBertModel( | ||
(embeddings): Embeddings( | ||
(word_embeddings): Embedding(30523, 768) | ||
(position_embeddings): Embedding(512, 768) | ||
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) | ||
(dropout): Dropout(p=0.1, inplace=False) | ||
) | ||
(transformer): Transformer( | ||
(layer): ModuleList( | ||
(0-5): 6 x TransformerBlock( | ||
(attention): MultiHeadSelfAttention( | ||
(dropout): Dropout(p=0.1, inplace=False) | ||
(q_lin): Linear(in_features=768, out_features=768, bias=True) | ||
(k_lin): Linear(in_features=768, out_features=768, bias=True) | ||
(v_lin): Linear(in_features=768, out_features=768, bias=True) | ||
(out_lin): Linear(in_features=768, out_features=768, bias=True) | ||
) | ||
(sa_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) | ||
(ffn): FFN( | ||
(dropout): Dropout(p=0.1, inplace=False) | ||
(lin1): Linear(in_features=768, out_features=3072, bias=True) | ||
(lin2): Linear(in_features=3072, out_features=768, bias=True) | ||
(activation): GELUActivation() | ||
) | ||
(output_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) | ||
) | ||
) | ||
) | ||
) | ||
) | ||
(decoder): Linear(in_features=768, out_features=2, bias=True) | ||
(dropout): Dropout(p=0.0, inplace=False) | ||
(locked_dropout): LockedDropout(p=0.0) | ||
(word_dropout): WordDropout(p=0.0) | ||
(loss_function): CrossEntropyLoss() | ||
(weights): None | ||
(weight_tensor) None | ||
)" | ||
2024-02-15 01:50:33,725 ---------------------------------------------------------------------------------------------------- | ||
2024-02-15 01:50:33,727 Corpus: 100000 train + 50000 dev + 50000 test sentences | ||
2024-02-15 01:50:33,728 ---------------------------------------------------------------------------------------------------- | ||
2024-02-15 01:50:33,728 Train: 100000 sentences | ||
2024-02-15 01:50:33,729 (train_with_dev=False, train_with_test=False) | ||
2024-02-15 01:50:33,730 ---------------------------------------------------------------------------------------------------- | ||
2024-02-15 01:50:33,730 Training Params: | ||
2024-02-15 01:50:33,731 - learning_rate: "5e-05" | ||
2024-02-15 01:50:33,732 - mini_batch_size: "16" | ||
2024-02-15 01:50:33,733 - max_epochs: "2" | ||
2024-02-15 01:50:33,734 - shuffle: "True" | ||
2024-02-15 01:50:33,735 ---------------------------------------------------------------------------------------------------- | ||
2024-02-15 01:50:33,736 Plugins: | ||
2024-02-15 01:50:33,736 - LinearScheduler | warmup_fraction: '0.1' | ||
2024-02-15 01:50:33,737 ---------------------------------------------------------------------------------------------------- | ||
2024-02-15 01:50:33,738 Final evaluation on model after last epoch (final-model.pt) | ||
2024-02-15 01:50:33,739 - metric: "('micro avg', 'f1-score')" | ||
2024-02-15 01:50:33,739 ---------------------------------------------------------------------------------------------------- | ||
2024-02-15 01:50:33,740 Computation: | ||
2024-02-15 01:50:33,740 - compute on device: cuda:0 | ||
2024-02-15 01:50:33,741 - embedding storage: none | ||
2024-02-15 01:50:33,742 ---------------------------------------------------------------------------------------------------- | ||
2024-02-15 01:50:33,742 Model training base path: "/home/saradindu/dev/mlops_pipeline_flair/model" | ||
2024-02-15 01:50:33,743 ---------------------------------------------------------------------------------------------------- | ||
2024-02-15 01:50:33,744 ---------------------------------------------------------------------------------------------------- | ||
2024-02-15 01:51:45,969 epoch 1 - iter 625/6250 - loss 0.64502749 - time (sec): 72.22 - samples/sec: 138.46 - lr: 0.000025 - momentum: 0.000000 | ||
2024-02-15 01:52:57,951 epoch 1 - iter 1250/6250 - loss 0.64658868 - time (sec): 144.21 - samples/sec: 138.69 - lr: 0.000050 - momentum: 0.000000 | ||
2024-02-15 01:53:51,474 epoch 1 - iter 1875/6250 - loss 0.64586535 - time (sec): 197.73 - samples/sec: 151.72 - lr: 0.000047 - momentum: 0.000000 | ||
2024-02-15 01:54:38,187 epoch 1 - iter 2500/6250 - loss 0.64371272 - time (sec): 244.44 - samples/sec: 163.64 - lr: 0.000044 - momentum: 0.000000 | ||
2024-02-15 01:55:26,193 epoch 1 - iter 3125/6250 - loss 0.64213044 - time (sec): 292.45 - samples/sec: 170.97 - lr: 0.000042 - momentum: 0.000000 | ||
2024-02-15 01:56:13,187 epoch 1 - iter 3750/6250 - loss 0.63952776 - time (sec): 339.44 - samples/sec: 176.76 - lr: 0.000039 - momentum: 0.000000 | ||
2024-02-15 01:57:00,241 epoch 1 - iter 4375/6250 - loss 0.63750715 - time (sec): 386.50 - samples/sec: 181.11 - lr: 0.000036 - momentum: 0.000000 | ||
2024-02-15 01:57:47,195 epoch 1 - iter 5000/6250 - loss 0.63538186 - time (sec): 433.45 - samples/sec: 184.57 - lr: 0.000033 - momentum: 0.000000 | ||
2024-02-15 01:58:34,126 epoch 1 - iter 5625/6250 - loss 0.63348917 - time (sec): 480.38 - samples/sec: 187.35 - lr: 0.000031 - momentum: 0.000000 | ||
2024-02-15 01:59:21,740 epoch 1 - iter 6250/6250 - loss 0.63089388 - time (sec): 528.00 - samples/sec: 189.40 - lr: 0.000028 - momentum: 0.000000 | ||
2024-02-15 01:59:21,744 ---------------------------------------------------------------------------------------------------- | ||
2024-02-15 01:59:21,744 EPOCH 1 done: loss 0.6309 - lr: 0.000028 | ||
2024-02-15 02:00:20,552 DEV : loss 0.5970726609230042 - f1-score (micro avg) 0.6946 | ||
2024-02-15 02:00:27,587 ---------------------------------------------------------------------------------------------------- | ||
2024-02-15 02:01:15,963 epoch 2 - iter 625/6250 - loss 0.58762203 - time (sec): 48.38 - samples/sec: 206.72 - lr: 0.000025 - momentum: 0.000000 | ||
2024-02-15 02:02:04,589 epoch 2 - iter 1250/6250 - loss 0.58750381 - time (sec): 97.00 - samples/sec: 206.18 - lr: 0.000022 - momentum: 0.000000 | ||
2024-02-15 02:02:53,203 epoch 2 - iter 1875/6250 - loss 0.58771694 - time (sec): 145.62 - samples/sec: 206.02 - lr: 0.000019 - momentum: 0.000000 | ||
2024-02-15 02:03:40,738 epoch 2 - iter 2500/6250 - loss 0.58723556 - time (sec): 193.15 - samples/sec: 207.09 - lr: 0.000017 - momentum: 0.000000 | ||
2024-02-15 02:04:29,036 epoch 2 - iter 3125/6250 - loss 0.58658684 - time (sec): 241.45 - samples/sec: 207.08 - lr: 0.000014 - momentum: 0.000000 | ||
2024-02-15 02:05:16,484 epoch 2 - iter 3750/6250 - loss 0.58653806 - time (sec): 288.90 - samples/sec: 207.69 - lr: 0.000011 - momentum: 0.000000 | ||
2024-02-15 02:06:03,555 epoch 2 - iter 4375/6250 - loss 0.58480701 - time (sec): 335.97 - samples/sec: 208.35 - lr: 0.000008 - momentum: 0.000000 | ||
2024-02-15 02:06:51,786 epoch 2 - iter 5000/6250 - loss 0.58370964 - time (sec): 384.20 - samples/sec: 208.23 - lr: 0.000006 - momentum: 0.000000 | ||
2024-02-15 02:07:40,413 epoch 2 - iter 5625/6250 - loss 0.58276976 - time (sec): 432.83 - samples/sec: 207.94 - lr: 0.000003 - momentum: 0.000000 | ||
2024-02-15 02:08:28,648 epoch 2 - iter 6250/6250 - loss 0.58139204 - time (sec): 481.06 - samples/sec: 207.87 - lr: 0.000000 - momentum: 0.000000 | ||
2024-02-15 02:08:28,652 ---------------------------------------------------------------------------------------------------- | ||
2024-02-15 02:08:28,653 EPOCH 2 done: loss 0.5814 - lr: 0.000000 | ||
2024-02-15 02:09:27,719 DEV : loss 0.5921458005905151 - f1-score (micro avg) 0.7003 | ||
2024-02-15 02:09:34,409 ---------------------------------------------------------------------------------------------------- | ||
2024-02-15 02:09:34,410 Testing using last state of model ... | ||
2024-02-15 02:10:31,946 | ||
Results: | ||
- F-score (micro) 0.6965 | ||
- F-score (macro) 0.5612 | ||
- Accuracy 0.6965 | ||
|
||
By class: | ||
precision recall f1-score support | ||
|
||
0 0.7056 0.9366 0.8049 33414 | ||
1 0.6249 0.2128 0.3175 16586 | ||
|
||
accuracy 0.6965 50000 | ||
macro avg 0.6653 0.5747 0.5612 50000 | ||
weighted avg 0.6788 0.6965 0.6432 50000 | ||
|
||
2024-02-15 02:10:31,947 ---------------------------------------------------------------------------------------------------- |