Skip to content

saranya-ponnarasu/Titanic_Survival_Predictor

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

7 Commits
 
 
 
 
 
 

Repository files navigation

Titanic_Survival_Predictor

Problem Statement:

Predict survival on the Titanic using logistic regression by exploring relationships between passenger characteristics and survival outcomes through data cleaning, EDA, and model training. Dataset sourced from Kaggle.

Objective:

To predict Titanic survival with a logistic regression model, aiming for higher accuracy, precision, and recall using dataset features.

Libraries Used:

  1. Numpy (for data manipulation)
  2. Pandas (for data manipulation)
  3. Matplotlib (for data visualization)
  4. Seaborn (for data visualization)
  5. Statstools (for data modeling)
  6. Scikit-Learn (for data modeling)
  7. Collections (for counting occurences)
  8. imblearn (for oversampling)

Contents:

  1. Importing Libraries
  2. Importing Dataset
  3. Data Understanding
  4. Handling Missing Values
  • 4.1 Handling missing values - Dropping
  • 4.2 Handling missing values - Imputing
    • 4.2.1 Feature engineering
  1. Exploratory Data Analysis
  • 5.1 Bivariate Analysis
  • 5.2 Multivariate Analysis
  1. Data Preparation for Modeling
  • 6.1 Binary Encoding
  • 6.2 Splitting train and test data set
  • 6.3 Resampling Class Imbalance
  • 6.4 Feature Scaling
  1. Training the Model
  • 7.1 Model Creation
  • 7.2 VIF
  1. Precision - Recall Analysis
  • 8.1 Confusion Matrix
  • 8.2 Precison and Recall
  • 8.3 Optimal Cut off - Precision_Recall_Curve
  1. Predicting on the Test Data
  2. Preparation and Submission
  • 10.1 Missing values
    • 10.1.1 Handling missing values - Imputing
  • 10.2 Binary Encoding
  • 10.3 Scaling the Features
  • 10.4 Dropping the unnecessary columns
  • 10.5 Prediction and Submission

About

Predicting Titanic Survivors using a Logistic Regression model

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published