Skip to content

sathwikshetty33/InterXAI

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

33 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

InterXAI

Autonomous AI-Powered Interview & Career Development Platform

InterXAI is an agentic AI platform that revolutionizes hiring and career development through autonomous AI agents. Our microservice-based multi-agent system handles everything from intelligent interview orchestration to personalized career coaching—operating with minimal human intervention while maximizing scalability.


Architecture Overview

InterXAI follows a microservice architecture designed for horizontal scalability and independent deployment of services.

┌─────────────────────────────────────────────────────────────────────────┐
│                        InterXAI Microservice Architecture               │
├─────────────────────────────────────────────────────────────────────────┤
│                                                                         │
│   ┌──────────────┐     ┌──────────────┐     ┌──────────────────────┐    │
│   │   Frontend   │────▶│   Backend    │────▶│   AI Agent Service  │    │
│   │   (React)    │     │   (Django)   │     │     (Groq LLM)       │    │
│   └──────────────┘     └──────────────┘     └──────────────────────┘    │
│          │                    │                                         │
│          │                    ▼                                         │
│          │             ┌──────────────┐     ┌──────────────────────┐    │
│          │             │  PostgreSQL  │     │        Redis         │    │
│          │             │  (Database)  │     │  (Cache/Sessions)    │    │
│          │             └──────────────┘     └──────────────────────┘    │
│          │                                                              │
│          └──────────────────────────────────────────────────────────────│
│                              Nginx Reverse Proxy                        │
└─────────────────────────────────────────────────────────────────────────┘

Agentic AI System

InterXAI leverages LLM-powered autonomous agents that work together:

Agent Capabilities

Agent Autonomy Level Function
Interview Orchestrator Fully Autonomous Plans and structures interviews based on job requirements
Question Generation Agent Autonomous Generates contextual questions from resumes and JDs
Evaluation Agent Semi-Autonomous Scores answers and provides reasoning
Feedback Synthesis Agent Autonomous Analyzes patterns and generates actionable insights
Career Co-Pilot Agent Interactive Guides candidates with personalized recommendations
Roadmap Agent Autonomous Creates learning paths based on skill gaps

Agent Workflow

Job Description → [JD Parser Agent] → [Question Planning Agent] → [Question Generation Agent]
                                                                            ↓
Candidate Response → [Evaluation Agent] → [Scoring Agent] → [Feedback Agent]

Key Features

Agentic Interview System

  • Autonomous Interview Planning - AI agents design complete interview flows
  • Dynamic Question Generation - Context-aware agents create questions in real-time
  • Multi-Modal Assessment - Technical, resume-based, and competency evaluation
  • Intelligent Proctoring Agent - Autonomous monitoring for interview integrity

AI-Driven Candidate Evaluation

  • Agentic Scoring Pipeline - Multi-step reasoning for fair evaluation
  • Pattern Recognition - Agents identify strengths and improvement areas
  • Automated Feedback Generation - Personalized insights without human intervention

Career Co-Pilot (Autonomous Career Agent)

  • Personalized AI Coaching - Always-on career advisor
  • Skill Gap Analysis - Identify learning opportunities
  • Dynamic Roadmap Generation - Auto-generated learning paths
  • Opportunity Matching - Intelligent job recommendations

Tech Stack

Services

Service Technology Purpose
Frontend React 19, Vite 6 User Interface
Backend Django 5.2, DRF API and Business Logic
Database PostgreSQL 15 Persistent Storage
Cache Redis 7 Session Storage and Caching
AI Engine Groq (Llama 3.1) Agent Inference
Proxy Nginx Load Balancing and Routing

Agent Framework

Technology Purpose
LangChain Agent orchestration and chains
LangGraph Multi-agent workflows and state management
Groq LLM Fast inference for real-time responses

Scalability

InterXAI is designed for enterprise-scale deployments:

Horizontal Scaling

  • Stateless Backend - Backend containers can be replicated across multiple nodes
  • Load Balancing - Nginx distributes traffic across backend instances
  • Database Replication - PostgreSQL supports read replicas for high availability

Microservice Benefits

  • Independent Deployment - Each service can be updated without affecting others
  • Technology Flexibility - Services can use different tech stacks as needed
  • Fault Isolation - Service failures don't cascade to the entire system
  • Team Autonomy - Different teams can own and maintain separate services

Performance Optimization

  • Redis Caching - Reduces database load for frequently accessed data
  • CDN Ready - Static assets can be served from edge locations
  • Connection Pooling - Efficient database connection management
  • Async Processing - Long-running AI tasks can be queued

Project Structure

InterXAI/
├── src/                          # React Frontend
│   ├── components/               # Reusable UI components
│   ├── pages/                    # Page components
│   └── routes/                   # Routing configuration
│
├── core/                         # Django Backend
│   ├── interview/                # Interview agent logic
│   ├── career/                   # Career planning agents
│   ├── feedback/                 # Feedback synthesis agent
│   ├── users/                    # Authentication
│   └── organization/             # Company management
│
├── Dockerfile.frontend           # Frontend container
├── Dockerfile.backend            # Backend container
├── docker-compose.yml            # Service orchestration
├── nginx.conf                    # Nginx configuration
└── requirements.txt              # Python dependencies

Getting Started

Prerequisites

  • Docker and Docker Compose
  • Node.js 18+ (for local development)
  • Python 3.11+ (for local development)
  • Groq API Key

Quick Start with Docker

# Clone the repository
git clone https://github.com/sathwikshetty33/InterXAI.git
cd InterXAI

# Copy environment files
cp .env.example .env
cp core/.env.example core/.env

# Edit the environment files with your configuration
# Make sure to set GROQ_API_KEY

# Start all services
docker-compose up -d

# Access the application
# Frontend: http://localhost:3000
# Backend:  http://localhost:8000

Docker Commands

# Start all services
docker-compose up -d

# View logs
docker-compose logs -f

# Stop all services
docker-compose down

# Rebuild after code changes
docker-compose up -d --build

# Scale backend instances
docker-compose up -d --scale backend=4

Local Development

Frontend

npm install
npm run dev

Backend

cd core
python -m venv .venv
source .venv/bin/activate
pip install -r ../requirements.txt
python manage.py migrate
python manage.py runserver

Environment Configuration

Frontend (.env.example)

# Backend API URL
VITE_API_URL=http://localhost:8000

Backend (core/.env.example)

# Django Configuration
SECRET_KEY=your-secret-key-here
DEBUG=True
ALLOWED_HOSTS=localhost,127.0.0.1

# Database Configuration
DATABASE_URL=postgresql://postgres:postgres@localhost:5432/interxai

# Redis Configuration
REDIS_URL=redis://localhost:6379/0

# AI Agent Configuration
GROQ_API_KEY=your-groq-api-key-here

# Email Configuration
EMAIL_USER=your-email@gmail.com
EMAIL_PASSWORD=your-app-password

# CORS Configuration
CORS_ALLOWED_ORIGINS=http://localhost:3000,http://localhost:5173

Docker Configuration

Frontend Dockerfile

Multi-stage build for optimized production image:

  • Stage 1: Build React application with Vite
  • Stage 2: Serve with Nginx (alpine-based, ~25MB)

Backend Dockerfile

Production-ready Django container:

  • Python 3.11 slim base image
  • Gunicorn WSGI server with 4 workers
  • Static file collection included

Docker Compose Services

Service Port Description
frontend 3000 React application served via Nginx
backend 8000 Django API with Gunicorn
db 5432 PostgreSQL database
redis 6379 Redis cache and session store

Deployment

Production Checklist

  1. Set DEBUG=False in backend environment
  2. Configure proper SECRET_KEY
  3. Set up SSL/TLS certificates
  4. Configure proper ALLOWED_HOSTS
  5. Set up database backups
  6. Configure monitoring and logging

Development

# Frontend
npm run dev      # Start dev server
npm run build    # Production build
npm run lint     # Run ESLint

# Backend
python manage.py runserver     # Start server
python manage.py migrate       # Run migrations
python manage.py createsuperuser  # Create admin

Contributing

  1. Fork the repository
  2. Create a feature branch: git checkout -b feature/new-agent
  3. Commit changes: git commit -m 'Add new evaluation agent'
  4. Push and open a Pull Request

License

This project is licensed under the MIT License - see the LICENSE file.


Support

For questions or issues, please open a GitHub issue.

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •