Skip to content

satomic/Azure-AI-Image-Editor-MCP

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

15 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

Azure Image Editor MCP Server

δΈ­ζ–‡ | English

This is an MCP (Model Context Protocol) server that supports Azure AI Foundry image generation and editing capabilities.

Features

  1. Text-to-Image Generation - Generate high-quality images from text descriptions using Azure AI Foundry models
  2. Image Editing - Edit and modify existing images
  3. Configurable Models - Support for multiple Azure AI models via environment variables

Demo

Click πŸ‘‡ to go to the demo on YouTube

Using GitHub Copilot & Azure AI Foundry with FLUX 1 Kontext Full Walkthrough for Image Generation Demo

Project Structure

azure-image-editor/
β”œβ”€β”€ .venv/                        # Python virtual environment
β”œβ”€β”€ src/
β”‚   β”œβ”€β”€ azure_image_client.py     # Azure API client
β”‚   β”œβ”€β”€ mcp_server.py             # STDIO MCP server
β”‚   └── mcp_server_http.py        # HTTP/JSON-RPC MCP server
β”œβ”€β”€ tests/                        # Test files
β”œβ”€β”€ logs/                         # Server logs
β”œβ”€β”€ tmp/                          # Temporary files
β”œβ”€β”€ requirements.txt              # Python dependencies
β”œβ”€β”€ .env                          # Environment configuration
β”œβ”€β”€ .env.example                  # Environment configuration template
└── README.md                     # Project documentation

Prerequisites

⚠️ Important: Before using this MCP server, you must deploy the required model in your Azure AI Foundry environment.

Azure AI Foundry Model Deployment

  1. Access Azure AI Foundry: Go to Azure AI Foundry
  2. Deploy the model: Deploy flux.1-kontext-pro (or your preferred model) in your Azure AI Foundry workspace
  3. Get deployment details: Note down your:
    • Base URL (endpoint)
    • API key
    • Deployment name
    • Model name

Without proper model deployment, the MCP server will not function correctly.

Installation and Setup

  1. Clone and setup environment:
git clone https://github.com/satomic/Azure-AI-Image-Editor-MCP.git
cd azure-image-editor
python -m venv .venv
source .venv/bin/activate  # Linux/Mac
# or .venv\Scripts\activate  # Windows
pip install -r requirements.txt

Server Modes

This project supports two MCP server modes:

1. STDIO Mode (Default)

Communicates via standard input/output. Suitable for VSCode integration.

2. HTTP/JSON-RPC Mode

Communicates via HTTP with JSON-RPC 2.0 protocol. Suitable for web applications and remote access.

Configuration

Configure STDIO Mode (VSCode MCP)

Add the following to your VSCode MCP configuration:

{
  "servers": {
    "azure-image-editor": {
      "command": "/full/path/to/.venv/bin/python",
      "args": ["/full/path/to/azure-image-editor/src/mcp_server.py"],
      "env": {
        "AZURE_BASE_URL": "https://your-endpoint.services.ai.azure.com", // deployment endpoint
        "AZURE_API_KEY": "${input:azure-api-key}",
        "AZURE_DEPLOYMENT_NAME": "FLUX.1-Kontext-pro", // The name you gave your deployment
        "AZURE_MODEL": "flux.1-kontext-pro", // Default model
        "AZURE_API_VERSION": "2025-04-01-preview" // Default API version
      }
    }
  },
  "inputs": [
    {
      "id": "azure-api-key",
      "type": "promptString",
      "description": "Enter your Azure API Key",
      "password": "true"
    }
  ]
}

Important: Replace /full/path/to/ with the actual absolute path to this project directory.

Configure HTTP/JSON-RPC Mode

Option 1: Run directly with environment variables

# Activate virtual environment
source .venv/bin/activate  # Linux/Mac
# or .venv\Scripts\activate  # Windows

# Set environment variables
export AZURE_BASE_URL="https://your-endpoint.services.ai.azure.com"
export AZURE_API_KEY="your-api-key"
export AZURE_DEPLOYMENT_NAME="FLUX.1-Kontext-pro"
export AZURE_MODEL="flux.1-kontext-pro"
export AZURE_API_VERSION="2025-04-01-preview"

# Optional: Configure server host and port (defaults to 127.0.0.1:8000)
export MCP_SERVER_HOST="0.0.0.0"  # Listen on all interfaces
export MCP_SERVER_PORT="8000"      # Server port

# Start the HTTP server
python src/mcp_server_http.py

Option 2: Use .env file

Create a .env file in the project root:

AZURE_BASE_URL=https://your-endpoint.services.ai.azure.com
AZURE_API_KEY=your-api-key
AZURE_DEPLOYMENT_NAME=FLUX.1-Kontext-pro
AZURE_MODEL=flux.1-kontext-pro
AZURE_API_VERSION=2025-04-01-preview

# Optional server configuration
MCP_SERVER_HOST=127.0.0.1
MCP_SERVER_PORT=8000
DEFAULT_IMAGE_SIZE=1024x1024

Then start the server:

source .venv/bin/activate
python src/mcp_server_http.py

Server Endpoints

When the HTTP server is running, the following endpoints are available:

  • JSON-RPC Endpoint: http://127.0.0.1:8000/ - Main JSON-RPC 2.0 endpoint (POST)
  • Health Check: http://127.0.0.1:8000/health - Server health status (GET)

Connecting to HTTP Server

Important for HTTP Mode: When using HTTP mode, even if you provide an output_path parameter, the server will:

  1. Save the image to the specified path on the server
  2. Also return the base64-encoded image data to the client

This allows the MCP client to receive the image data and save it locally without needing additional file transfer.

Using VSCode MCP Client:

{
  "servers": {
    "azure-image-editor-http": {
      "type": "http",
      "url": "http://127.0.0.1:8000"
    }
  }
}

Using curl:

# List available tools
curl -X POST http://127.0.0.1:8000/ \
  -H "Content-Type: application/json" \
  -d '{"jsonrpc": "2.0", "id": 1, "method": "tools/list", "params": {}}'

# Call generate_image tool
curl -X POST http://127.0.0.1:8000/ \
  -H "Content-Type: application/json" \
  -d '{
    "jsonrpc": "2.0",
    "id": 2,
    "method": "tools/call",
    "params": {
      "name": "generate_image",
      "arguments": {
        "prompt": "A beautiful sunset over mountains",
        "size": "1024x1024",
        "output_path": "./images/sunset.png"
      }
    }
  }'

Available MCP Tools

1. generate_image

Generate images from text prompts

Parameters:

  • prompt (required): English text description for image generation
  • size (optional): Image size - "1024x1024", "1792x1024", "1024x1792", default: "1024x1024"
  • output_path (optional): Output file path, returns base64 encoded image if not provided

Example:

{
  "name": "generate_image",
  "arguments": {
    "prompt": "A beautiful sunset over mountains",
    "size": "1024x1024",
    "output_path": "/path/to/output/image.png"
  }
}

2. edit_image

Edit existing images with intelligent dimension preservation

Parameters:

STDIO mode:

  • image_path (required): Path to the image file to edit
  • prompt (required): English text description of how to edit the image
  • size (optional): Output image size, uses original dimensions if not specified
  • output_path (optional): Output file path

HTTP mode:

  • image_data_base64 (required): Base64 encoded image data
    • Supports raw base64 format: iVBORw0KGgoAAAANS...
    • Supports Data URL format: ...
  • prompt (required): English text description of how to edit the image
  • size (optional): Output image size, uses original dimensions if not specified
  • output_path (optional): Output file path (server-side), image data always returned to client

Example (STDIO mode):

{
  "name": "edit_image",
  "arguments": {
    "image_path": "/path/to/input/image.png",
    "prompt": "Make this black and white",
    "output_path": "/path/to/output/edited_image.png"
  }
}

Example (HTTP mode):

{
  "name": "edit_image",
  "arguments": {
    "image_data_base64": "iVBORw0KGgoAAAANS...",
    "prompt": "Make this black and white",
    "output_path": "/tmp/edited_image.png"
  }
}

Or using Data URL format:

{
  "name": "edit_image",
  "arguments": {
    "image_data_base64": "...",
    "prompt": "Make this black and white",
    "output_path": "/tmp/edited_image.png"
  }
}

Technical Specifications

  • Python version: 3.8+

  • Main dependencies:

    • mcp: MCP protocol support
    • httpx: HTTP client with timeout handling
    • pillow: Image processing and dimension detection
    • aiofiles: Async file operations
    • pydantic: Data validation
    • python-dotenv: Environment variable management
    • starlette: ASGI framework for HTTP server (HTTP mode only)
    • uvicorn: ASGI server (HTTP mode only)
  • Azure AI Foundry:

    • Default model: flux.1-kontext-pro (configurable)
    • Default API version: 2025-04-01-preview (configurable)
    • Supported image sizes: 1024x1024, 1792x1024, 1024x1792
    • Timeout: 5 minutes per request

Troubleshooting

  1. Timeout Errors: Image processing has 5-minute timeout, check network connectivity
  2. API Errors: Verify Azure credentials and endpoint URL
  3. Dependency Issues: Ensure virtual environment is activated and dependencies installed
  4. Server Connection Issues: Verify VSCode MCP configuration path is correct

License

MIT License

About

MCP Server that supports Azure AI Foundry image generation and editing capabilities.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published