When training over the years 2016
to 2018
for testing on the year 2019
- Check that these files exist in the data folder
- aus-open-player-stats-2015.csv
- aus-open-player-stats-2016.csv
- aus-open-player-stats-2017.csv
- m2016.csv
- m2017.csv
- m2018.csv
- m2019.csv
-
Open the notebook
neural_network.ipynb
/svm.ipynb
/gradient_boost.ipynb
-
Check that the
Inputs
heading contains the right parameters. -
Run the notebook until a preview of the variable
r_16_merge
is displayed. -
Compare it to the tournament result.
- Download match outcome data from this website
- If adding data for the year 2015, Save it as
m2015.csv
- Run the main.py as
python3 main.py --year 2014
python3 all_pressure.py --year 2014
- Continue from
Step 2
- Neural Network
- Hyperparameters
- activation=
logistic
- solver=
adam
- learning_rate=
adaptive
- max_iter=
10000
- warm_start=
True
- hidden_layer_sizes=
(128,50,2)
- activation=
- Hyperparameters
- Support Vector Machine (linear kernel)
- Hyperparameters
- kernel=
linear
- C=
0.001
- max_iter=
1000000
- kernel=
- Hyperparameters
- Gradient Boost
- Hyperparameters
- n_estimators=
10000
- learning_rate=
0.00001
- criterion=
squared_error
- loss=
exponential
- n_estimators=
- Hyperparameters
- People with no stats have been considered as walkovers
Model | Round of 16 | Round of 32 | Round of 64 |
---|---|---|---|
Baseline | 8 | 22 | 43 |
Neural Network | 10 | 23 | 50 |
SVM (Linear) | 9 | 23 | 50 |
Gradient Boost | 10 | 22 | 54 |
Model | Round of 16 | Round of 32 | Round of 64 |
---|---|---|---|
Baseline | 11 | 20 | 34 |
Neural Network | 6 | 17 | 40 |
SVM (Linear) | 5 | 20 | 46 |
Gradient Boost | 8 | 22 | 46 |