该数据集由2968个训练图像对和847个测试图像对组成。对于每对训练数据,提供原始图像及其对应的语义变化图。目前仅训练集公开图像及对应标签,测试图像标签未公开。这些图像对的分辨率在0.5~3m之间,大小为512×512像素,涵盖了六种类型的土地覆盖类型,即水、地面、低植被、树木、建筑和游乐场,总共有31种“从A到B”变化类型。
该数据集包含来自 IGS 的 BD ORTHO 数据库的 291 个 RGB 航空图像的联合配准图像对。数据集分为五个部分:2006年图片、2012年图片、更改标签、2006年土地覆盖地图、2012年土地覆盖地图,主要关注五类变化,分别是人造表面、农业区、森林、湿地、水。
Landsat SCD数据集由8468对图像组成,每个图像的固定大小为416×416像素,分辨率为30m。该数据集涉及一个无变化类别和四个土地覆盖类别,包括农田、沙漠、建筑物和水。
- Guangzhou dataset【hn8p】 | paper
-
Multitask learning for large-scale semantic change detection,Computer Vision and Image Understanding 2019
-
Asymmetric siamese networks for semantic change detection in aerial images,IEEE Transactions on Geoscience and Remote Sensing 2021
-
SCDNET: A novel convolutional network for semantic change detection in high resolution optical remote sensing imagery,International Journal of Applied Earth Observation and Geoinformation 2021[code]
-
Spatially and Semantically Enhanced Siamese Network for Semantic Change Detection in High-Resolution Remote Sensing Images, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 2022
-
Bi-Temporal Semantic Reasoning for the Semantic Change Detection in HR Remote Sensing Images, IEEE Transactions on Geoscience and Remote Sensing 2022 [code]
-
ChangeMask: Deep multi-task encoder-transformer-decoder architecture for semantic change detection , ISPRS Journal of Photogrammetry and Remote Sensing, 2022
-
SMNet: Symmetric Multi-T ask Network for Semantic Change Detection in Remote Sensing Images Based on CNN and T ransformer, Remote Sensing, 2023
-
Dual-T ask Semantic Change Detection for Remote Sensing Images Using the Generative Change Field Module, Remote Sensing, 2021
-
Large-scale deep learning based binary and semantic change detection in ultra high resolution remote sensing imagery: From benchmark datasets to urban application, ISPRS Journal of Photogrammetry and Remote Sensing, 2022 提出Hi-UCD数据集,但未公开
-
A transformer-based Siamese network and an open optical dataset for semantic change detection of remote sensing images,International Journal of Digital Earth, 2022
-
Joint Spatio-Temporal Modeling for Semantic Change Detection in Remote Sensing Images, arXiv,2022
-
Feature Guided Multitask Change Detection Network, Remote Sens, 2022
-
A Deep Siamese Postclassification Fusion Network for Semantic Change Detection, IEEE Transactions on Geoscience and Remote Sensing, 2022
-
Learning spectral-spatial-temporal features via a recurrent convolutional neural network for change detection in multispectral imagery, Transactions on Geoscience and Remote Sensing, 2018
-
MTSCD-Net: A network based on multi-task learning for semantic change detection of bitemporal remote sensing images, International Journal of Applied Earth Observation and Geoinformation, 2023
- A Siamese Global Learning Framework for Multi-Class Change Detection, IEEE International Geoscience and Remote Sensing Symposium IGARSS. IEEE, 2021