AtomicAI is a Python-based package for building machine learning models in the field of computational materials science. It can be used for machine learning force field generation, atomic structure classifications based on temperature, defects, phase, and more.
- Features
- Installation
- Requirements
- Usage
- Examples
- Documentation
- Contributing
- License
- Authors
- Contact
- Cite
AtomicAI offers a wide range of features for computational materials science:
- Processing and visualization of atomic coordinates in various file formats (CIF, VASP, XYZ, Conquest, etc.)
- Utilizes 'ase' library for reading and writing structure files
- Radial Distribution Function (RDF) calculation and analysis
- Structure analysis tools
- Classification of atoms in trajectory files
- File format conversion between different atomic structure formats
- Featurization of atomic structures
- Dimension reduction techniques (PCA, LPP, TsLPP, TsNE, UMAP)
- Machine Learning Force Field (MLFF) generation
- Descriptor generation for atomic environments and forces
- Various clustering methods
- Data plotting and visualization tools for RDF, molecular dynamics statistics, and clustering results
Install AtomicAI using pip:
pip install AtomicAI
AtomicAI requires Python 3.7 or higher. Other dependencies will be automatically installed during the pip installation process.
AtomicAI provides several command-line tools for various tasks. Here are some examples:
cq2vasp
: Convert Conquest files to VASP formatxyz2vasp
: Convert XYZ files to VASP formatvasp2cif
: Convert VASP files to CIF formatvasp2xyz
: Convert VASP files to XYZ formatvasp2lmp_data
: Convert VASP files to LAMMPS data formatvasp2cq
: Convert VASP files to Conquest formatlmp2vasp
: Convert LAMMPS trajectory to VASP formatcif2cq
: Convert CIF files to Conquest formatcq2cif
: Convert Conquest files to CIF formatase_traj2xyz_traj
: Convert ASE trajectory to XYZ trajectory
supercell
: Create supercell structuresbuild_interface
: Build interfaces between materialswrap2unwrap
: Convert wrapped coordinates to unwrapped
rdf
: Calculate Radial Distribution Functionstructure_analysis
: Perform various structural analyses
plot_rdf_data
: Plot RDF dataplot_md_stats
: Plot molecular dynamics statisticsplot_vasp_md
: Plot VASP molecular dynamics resultsplot_lammps_md
: Plot LAMMPS molecular dynamics resultsplot_clusters
: Visualize clustering results
generate_descriptors
: Calculate atomic environment descriptorsgenerate_force_descriptors
: Generate force-related descriptorslaaf
: Calculate LAAF descriptorsdim_reduction
: Perform dimension reductiondim_reduction_mpi
: Perform parallel dimension reduction using MPIpca
: Perform Principal Component Analysislpp
: Perform Locality Preserving Projectionoptimize_tslpp_hyperparameters_without_prediction
: Optimize TsLPP hyperparametersoptimize_tslpp_hyperparameters_with_prediction
: Optimize TsLPP hyperparameters with predictionpredict_tslpp
: Predict using optimized TsLPP model
lammps_npt_inputs
: Generate LAMMPS NPT input fileslammps_nvt_inputs
: Generate LAMMPS NVT input files
For more details on each tool, use the --help
flag after the command.
(This section should be filled with basic examples of how to use the main features of AtomicAI. As the context doesn't provide specific examples, I'll leave this section for you to fill in with relevant use cases.)
(Add a link to the full documentation when available. The context doesn't provide this information, so you may want to add it when documentation is ready.)
We welcome contributions to AtomicAI! Please see our contributing guidelines for more information. (You may want to add a CONTRIBUTING.md file to your repository with detailed guidelines.)
AtomicAI is released under the MIT License. See the LICENSE.md
file for details.
- Selva Chandrasekaran Selvaraj
- Email: selvachandrasekar.s@gmail.com
- Website: https://sites.google.com/view/selvas
- Twitter: https://twitter.com/selva_odc
- LinkedIn: https://www.linkedin.com/in/selvachandrasekaranselvaraj/
- Google Scholar: https://scholar.google.com/citations?user=vNozeNYAAAAJ&hl=en
- Scopus: https://www.scopus.com/authid/detail.uri?authorId=57225319817
- ResearchGate: https://www.researchgate.net/profile/Selva-Chandrasekaran-Selvaraj
- PyPI: https://pypi.org/project/AtomicAI/
- Documentation: https://atomicai.readthedocs.io/en/latest/
- GitHub: https://github.com/SelvaGith/AtomicAI
If you use AtomicAI in your research, please cite: