Semioscan is a Rust library for blockchain analytics, providing production-grade tools for calculating gas costs, extracting price data from DEX swaps, and working with block ranges across multiple EVM-compatible chains.
Key differentiator: Semioscan is a library-only crate with no CLI, API server, or database dependencies. You bring your own infrastructure and integrate semioscan into your existing systems.
Built on Alloy, the modern Ethereum library for Rust, semioscan provides type-safe blockchain interactions with zero-copy parsing and excellent performance.
- Semioscan
- Table of Contents
- Features
- Use Cases
- Installation
- Quick Start
- Examples and Tutorials
- Core Concepts
- Implementing Custom Price Sources
- Library Architecture
- Multi-Chain Support
- Advanced Configuration
- Performance Considerations
- Running Tests and Examples
- Troubleshooting
- When NOT to Use Semioscan
- Production Usage
- Contributing
- License
- Acknowledgments
- Gas Cost Calculation: Accurately calculate transaction gas costs for both L1 (Ethereum) and L2 (Optimism Stack) chains, including L1 data fees
- Block Window Calculations: Map UTC dates to blockchain block ranges with intelligent caching
- DEX Price Extraction: Extensible trait-based system for extracting price data from on-chain swap events
- Multi-Chain Support: Works with 12+ EVM chains including Ethereum, Arbitrum, Base, Optimism, Polygon, and more
- Event Scanning: Extract transfer amounts and events from blockchain transaction logs
- Production-Ready: Battle-tested in production for automated trading and DeFi applications processing millions of dollars in swaps
Semioscan is ideal for:
- DeFi Liquidation Bots: Calculate profitability accounting for accurate gas costs across L1/L2 chains
- Trading Automation: Extract real-time price data from DEX swaps for arbitrage detection
- Blockchain Analytics: Map calendar dates to block ranges for historical analysis and reporting
- Token Discovery: Scan chains for tokens transferred to specific addresses (e.g., router contracts)
- Financial Reporting: Calculate transaction costs for accounting and tax purposes
- MEV Research: Analyze gas costs and swap prices for MEV opportunity detection
- Multi-Chain Operations: Consistent API across 12+ EVM chains with automatic L2 fee handling
Add semioscan to your Cargo.toml:
[dependencies]
# Core library (gas, block windows, events)
semioscan = "0.3"
# With Odos DEX reference implementation (optional)
semioscan = { version = "0.3", features = ["odos-example"] }odos-example: IncludesOdosPriceSourceas a reference implementation of thePriceSourcetrait for Odos DEX aggregator (optional, not included by default)
Calculate total gas costs for transactions between two addresses:
use semioscan::GasCalculator;
use alloy_provider::ProviderBuilder;
use alloy_chains::NamedChain;
#[tokio::main]
async fn main() -> anyhow::Result<()> {
// Create provider
let provider = ProviderBuilder::new()
.connect_http("https://arb1.arbitrum.io/rpc".parse()?);
// Create gas calculator
let calculator = GasCalculator::new(provider.clone());
// Calculate gas costs for a block range
let from_address = "0x123...".parse()?;
let to_address = "0x456...".parse()?;
let chain_id = NamedChain::Arbitrum as u64;
let result = calculator
.get_gas_cost(chain_id, from_address, to_address, 200_000_000, 200_001_000)
.await?;
println!("Total gas cost: {} wei", result.total_gas_cost);
println!("Transaction count: {}", result.transaction_count);
Ok(())
}L2 chains (Arbitrum, Base, Optimism) automatically include L1 data fees in the calculation.
Map a UTC date to the corresponding blockchain block range:
use semioscan::BlockWindowCalculator;
use alloy_provider::ProviderBuilder;
use alloy_chains::NamedChain;
use chrono::NaiveDate;
#[tokio::main]
async fn main() -> anyhow::Result<()> {
// Create provider
let provider = ProviderBuilder::new()
.connect_http("https://arb1.arbitrum.io/rpc".parse()?);
// Create calculator with disk cache
let calculator = BlockWindowCalculator::with_disk_cache(
provider.clone(),
"block_windows.json"
)?;
// Get block window for a specific day
let date = NaiveDate::from_ymd_opt(2025, 10, 15).unwrap();
let window = calculator
.get_daily_window(NamedChain::Arbitrum, date)
.await?;
println!("Date: {}", date);
println!("Block range: [{}, {}]", window.start_block, window.end_block);
println!("Block count: {}", window.block_count());
Ok(())
}Caching: Block windows are automatically cached to disk for faster subsequent queries.
Use the PriceSource trait to extract price data from on-chain swap events:
use semioscan::price::odos::OdosPriceSource; // requires "odos-example" feature
use semioscan::PriceCalculator;
use alloy_provider::ProviderBuilder;
#[tokio::main]
async fn main() -> anyhow::Result<()> {
// Create provider
let provider = ProviderBuilder::new()
.connect_http("https://arb1.arbitrum.io/rpc".parse()?);
// Create Odos price source for V2 router
let router_address = "0xa669e7A0d4b3e4Fa48af2dE86BD4CD7126Be4e13".parse()?;
let price_source = OdosPriceSource::new(router_address);
// Create price calculator with the price source
let calculator = PriceCalculator::with_price_source(
provider.clone(),
Box::new(price_source)
);
// Calculate average price for a token over a block range
let token_address = "0x789...".parse()?;
let result = calculator
.get_price(token_address, 200_000_000, 200_001_000)
.await?;
println!("Average price: {}", result.average_price);
println!("Total volume: {}", result.total_volume_in);
Ok(())
}The examples/ directory contains complete, production-ready examples demonstrating semioscan's capabilities. See examples/README.md for comprehensive documentation, setup instructions, and troubleshooting.
| Example | Use Case | Difficulty |
|---|---|---|
daily_block_window.rs |
Map UTC dates to block ranges | Beginner |
router_token_discovery.rs |
Discover tokens sent to router contracts | Intermediate |
eip4844_blob_gas.rs |
Calculate EIP-4844 blob gas for L2 rollups | Advanced |
custom_dex_integration.rs |
Implement PriceSource for any DEX |
Advanced |
# Basic usage
RPC_URL=https://arb1.arbitrum.io/rpc cargo run --example daily_block_window
# With chain-specific environment variables
ARBITRUM_RPC_URL=https://arb1.arbitrum.io/rpc cargo run --example router_token_discovery -- arbitrum
# With logging for debugging
RUST_LOG=debug cargo run --example eip4844_blob_gasFor detailed setup, configuration, performance tips, and troubleshooting, see examples/README.md.
A block window maps a calendar date (in UTC) to the range of blocks produced during that day. Different chains have different block production rates:
- Arbitrum: ~4 blocks/second (~345,600 blocks/day)
- Ethereum: ~12 seconds/block (~7,200 blocks/day)
- Base: ~2 seconds/block (~43,200 blocks/day)
Block windows enable date-based queries for analytics, reporting, and historical analysis.
L2 chains like Arbitrum, Base, and Optimism post transaction data to Ethereum for security. This creates two separate gas costs:
- Execution gas: Cost of running the transaction on L2 (cheap, uses L2 gas price)
- L1 data fee: Cost of posting transaction data to Ethereum (expensive, varies by calldata size and L1 gas price)
Semioscan automatically detects L2 chains and calculates both components for accurate total costs. This is critical for profitability calculations in liquidation bots and trading systems.
Semioscan provides flexible caching for block window calculations using a trait-based backend system. You can choose the caching strategy that best fits your needs.
DiskCache (recommended for production)
- Persistent JSON-based cache with file locking
- Survives process restarts
- Multi-process safe (advisory file locks)
- Configurable TTL and size limits
- Automatic path validation
- ~1-2ms cache hit latency
MemoryCache
- In-memory HashMap cache
- Fastest performance (<0.1ms cache hits)
- Data lost when process exits
- Configurable size limits with LRU eviction
- Ideal for short-lived processes
NoOpCache
- Disables caching entirely
- Zero overhead
- Always performs RPC queries
- Useful for testing or one-time queries
use semioscan::{BlockWindowCalculator, DiskCache, MemoryCache};
use std::time::Duration;
// Disk cache (simplest, recommended)
let calculator = BlockWindowCalculator::with_disk_cache(provider, "cache.json")?;
// Memory cache
let calculator = BlockWindowCalculator::with_memory_cache(provider);
// No cache
let calculator = BlockWindowCalculator::without_cache(provider);use semioscan::{BlockWindowCalculator, DiskCache};
use std::time::Duration;
// Disk cache with TTL and size limit
let cache = DiskCache::new("cache.json")
.with_ttl(Duration::from_secs(86400 * 7)) // 7 days
.with_max_entries(1000) // Max 1000 entries
.validate()?; // Validate path
let calculator = BlockWindowCalculator::new(provider, Box::new(cache));
// Memory cache with size limit
let cache = MemoryCache::new()
.with_max_entries(500)
.with_ttl(Duration::from_secs(3600));
let calculator = BlockWindowCalculator::new(provider, Box::new(cache));All cache backends track performance metrics:
let stats = calculator.cache_stats().await;
println!("Hit rate: {:.1}%", stats.hit_rate());
println!("Hits: {}, Misses: {}", stats.hits, stats.misses);
println!("Evictions: {}, Entries: {}", stats.evictions, stats.entries);- Production: Use
DiskCachewith TTL for persistent caching - Development: Use
MemoryCachefor faster iteration without disk I/O - Testing: Use
NoOpCacheorMemoryCacheto avoid file system dependencies - Path validation: Always call
.validate()onDiskCacheto catch path issues early - TTL: Set TTL based on your use case (block windows are immutable for past dates)
- Size limits: Set reasonable limits to prevent unbounded cache growth
DiskCache uses advisory file locking to prevent corruption when multiple processes share the same cache file. However, for high-concurrency scenarios, consider:
- Using separate cache files per process
- Using a centralized cache service (Redis, etc.) via custom
BlockWindowCachetrait implementation
Implement the BlockWindowCache trait to create custom cache backends (Redis, S3, etc.):
use semioscan::cache::{BlockWindowCache, CacheKey, CacheStats};
use semioscan::DailyBlockWindow;
use async_trait::async_trait;
struct RedisCacheBackend {
client: redis::Client,
}
#[async_trait]
impl BlockWindowCache for RedisCacheBackend {
async fn get(&self, key: &CacheKey) -> Option<DailyBlockWindow> {
// Implement Redis get logic
todo!()
}
async fn insert(&self, key: CacheKey, window: DailyBlockWindow)
-> Result<(), BlockWindowError>
{
// Implement Redis insert logic
todo!()
}
async fn clear(&self) -> Result<(), BlockWindowError> {
todo!()
}
async fn stats(&self) -> CacheStats {
todo!()
}
fn name(&self) -> &'static str {
"RedisCacheBackend"
}
}- Block windows: Mappings from (chain, date) to block ranges
- Immutable for past dates (perfect for caching)
- ~200 bytes per cached entry
- Dramatically reduces RPC usage (5-15s query → <1ms)
- Gas calculations: In-memory cache only (not persisted)
- Price calculations: In-memory cache only (not persisted)
Semioscan uses a trait-based architecture that allows you to implement price extraction for any DEX protocol. The PriceSource trait is object-safe and designed for easy extensibility.
use semioscan::price::{PriceSource, SwapData, PriceSourceError};
use alloy_primitives::{Address, B256, U256};
use alloy_rpc_types::Log;
use alloy_sol_types::sol;
// Define Uniswap V3 Swap event
sol! {
event SwapV3(
address indexed sender,
address indexed recipient,
int256 amount0,
int256 amount1,
uint160 sqrtPriceX96,
uint128 liquidity,
int24 tick
);
}
pub struct UniswapV3PriceSource {
pool_address: Address,
token0: Address,
token1: Address,
}
impl PriceSource for UniswapV3PriceSource {
fn router_address(&self) -> Address {
self.pool_address
}
fn event_topics(&self) -> Vec<B256> {
vec![SwapV3::SIGNATURE_HASH]
}
fn extract_swap_from_log(&self, log: &Log) -> Result<Option<SwapData>, PriceSourceError> {
let event = SwapV3::decode_log(&log.into())
.map_err(|e| PriceSourceError::DecodeError(e.to_string()))?;
// Determine swap direction based on amount signs
let (token_in, token_in_amount, token_out, token_out_amount) = if event.amount0.is_negative() {
(self.token0, event.amount0.unsigned_abs(), self.token1, U256::from(event.amount1))
} else {
(self.token1, event.amount1.unsigned_abs(), self.token0, U256::from(event.amount0))
};
Ok(Some(SwapData {
token_in,
token_in_amount,
token_out,
token_out_amount,
sender: Some(event.sender),
}))
}
}See the PriceSource trait documentation for more details and best practices.
Semioscan is a library-only crate with no binaries, CLI tools, or API servers. You bring your own:
- Blockchain Providers: Use Alloy to create providers for your chains
- Price Sources: Implement the
PriceSourcetrait for your DEX protocol - Configuration: Configure RPC endpoints and chain settings in your application
This design makes semioscan highly composable and easy to integrate into existing systems.
Semioscan works with any EVM-compatible chain. Chains with L2-specific features (like L1 data fees) are automatically detected and handled correctly.
Tested chains include:
- L1: Ethereum, Avalanche, BNB Chain
- L2: Arbitrum, Base, Optimism, Polygon, Scroll, Mode, Sonic, Fraxtal
Chain support is based on alloy-chains NamedChain enum.
Use SemioscanConfig to customize RPC behavior per chain:
use semioscan::SemioscanConfigBuilder;
use alloy_chains::NamedChain;
let config = SemioscanConfigBuilder::default()
.with_chain_override(
NamedChain::Base,
2000, // max_block_range
500 // rate_limit_per_second
)
.build()?;
// Pass config to calculators
let calculator = GasCalculator::with_config(provider.clone(), Some(config.clone()));Large block ranges are automatically chunked to prevent RPC timeouts:
- Default: 5,000 blocks per chunk (configurable per chain)
- Benefits: Prevents timeouts, enables progress tracking, reduces memory usage
Automatic rate limiting protects against RPC provider limits:
- Default: 100 requests/second (configurable per chain)
- Recommendation: Use paid RPC providers for production (300-1000+ req/s)
- Minimal: Caches are written to disk, not held in memory
- Typical cache size: 1-10 MB per chain
- Concurrency: Safe to run multiple queries concurrently
Typical performance characteristics (depends on RPC provider):
- Block window calculation: 5-15 seconds (first query), <1ms (cached)
- Gas calculation (1,000 blocks): 10-30 seconds
- Token discovery (10,000 blocks): 2-5 minutes
See examples/README.md#performance-tips for optimization strategies.
Semioscan has comprehensive unit tests for all business logic:
# Run all tests
cargo test --package semioscan --all-features
# Run only unit tests (no integration tests)
cargo test --package semioscan --lib
# Run specific test file
cargo test --package semioscan --test gas_calculator_tests
# Run with logging
RUST_LOG=debug cargo test --package semioscanExamples demonstrate real-world usage with live blockchain connections:
# Run example with environment variables
RPC_URL=https://arb1.arbitrum.io/rpc cargo run --package semioscan --example daily_block_window
# Run with logging
RUST_LOG=info RPC_URL=https://arb1.arbitrum.io/rpc cargo run --package semioscan --example router_token_discovery
# Run with chain-specific configuration
ARBITRUM_RPC_URL=https://arb1.arbitrum.io/rpc \
API_KEY=your_api_key \
cargo run --package semioscan --example router_token_discovery -- arbitrumFor detailed example documentation, see examples/README.md.
Rate Limiting (429 Too Many Requests)
- Solution: Use a paid RPC provider or increase rate limit delay in config
- See: examples/README.md#rpc-errors
Block Range Too Large
- Solution: Reduce
max_block_rangein config (default: 5,000) - Cause: Some RPC providers have stricter limits
Missing Data / No Logs Found
- Possible causes: Wrong contract address, invalid block range, chain reorganization
- Solution: Verify addresses and block range using a block explorer
Chain ID Issues
- Solution: Set
CHAIN_IDenvironment variable for chains withouteth_chainIdsupport - Affected chains: Some Avalanche RPC endpoints
For comprehensive troubleshooting, see examples/README.md#troubleshooting.
Semioscan may not be the best choice for:
- Real-time price feeds: Use WebSocket-based oracles (Chainlink, Pyth, etc.) for sub-second price updates
- Non-EVM chains: Semioscan is EVM-specific (Solana, Cosmos, etc. are not supported)
- Simple balance queries: Use lighter libraries like
ethers-rsfor basic token balances - Indexing entire chains: Use The Graph or custom indexers for comprehensive blockchain indexing
- High-frequency trading: RPC-based queries have latency; use WebSocket streams or MEV infrastructure
Semioscan excels at batch analytics, historical queries, and multi-chain operations where accurate gas cost calculation and flexible price extraction are required.
Semioscan is battle-tested in production for:
- Automated trading and DeFi applications processing millions of dollars in swaps across 12+ chains
- Financial reporting for blockchain transaction accounting
- Token analytics for discovering and tracking token transfers
Contributions are welcome! Areas of interest:
- Additional DEX protocol implementations (Uniswap, SushiSwap, Curve, etc.)
- Performance optimizations for large block ranges
- Additional caching strategies
- Documentation improvements
Licensed under the Apache License, Version 2.0. See LICENSE for details.
Built by Semiotic AI as part of the Likwid liquidation infrastructure. Extracted and open-sourced to benefit the Rust + Ethereum ecosystem.