Skip to content

Commit

Permalink
example for genee using sgkit
Browse files Browse the repository at this point in the history
  • Loading branch information
jdstamp committed Jan 26, 2024
1 parent d3a8d0a commit 8d8e23e
Showing 1 changed file with 50 additions and 4 deletions.
54 changes: 50 additions & 4 deletions sgkit/stats/genee.py
Original file line number Diff line number Diff line change
@@ -1,3 +1,5 @@
import warnings

import dask.array as da
import numpy as np
import pandas as pd
Expand All @@ -16,7 +18,9 @@ def genee(ds: Dataset, ld: ArrayLike, *, reg_covar: float = 0.000001) -> DataFra
Parameters
----------
ds
Dataset containing beta values (OLS betas or regularized betas).
Dataset containing marginal variant effect values in the variable "beta"
(OLS betas or regularized betas), and window definitions corresponding to
genomic regions of interest, e.g. genes.
ld
Dense 2D array corresponding to the LD matrix.
reg_covar
Expand All @@ -30,6 +34,41 @@ def genee(ds: Dataset, ld: ArrayLike, *, reg_covar: float = 0.000001) -> DataFra
the first mixture component with the largest variance if it is composed
of more than 50% of the SNPs.
Examples
--------
>>> import numpy as np
>>> import xarray as xr
>>> from sgkit.stats.genee import genee
>>> from sgkit.stats.association import gwas_linear_regression
>>> from sgkit.stats.ld import ld_matrix
>>> from sgkit.testing import simulate_genotype_call_dataset
>>> n_variant, n_sample, n_contig, n_covariate, n_trait, seed = 100, 50, 2, 3, 5, 0
>>> rs = np.random.RandomState(seed)
>>> ds = simulate_genotype_call_dataset(n_variant=n_variant, n_sample=n_sample, n_contig=n_contig, seed=seed)
>>> ds_pheno = xr.DataArray(np.random.rand(n_sample), dims=['samples'], name='phenotype')
>>> ds = ds.assign(phenotype=ds_pheno)
>>> ds["call_dosage"] = ds.call_genotype.sum(dim="ploidy")
>>> ds = gwas_linear_regression(ds, dosage="call_dosage", add_intercept=True, traits=["phenotype"], covariates=[])
>>> ds = ds.rename({"variant_linreg_beta": "beta"})
# genee cannot handle the return value of gwas_linear_regression, we need to
# convert it to a dataset with a single variant dimension
>>> ds_beta = xr.DataArray(np.random.rand(n_variant), dims=['variants'], name='beta')
>>> ds = ds.assign(beta=ds_beta)
>>> gene_start = np.array([0, 30])
>>> gene_stop = np.array([20, 40])
>>> gene_conitg = np.array([0, 1])
# genes are windows in this simple example
>>> ds["window_contig"] = (["windows"], gene_conitg)
>>> ds["window_start"] = (["windows"], gene_start)
>>> ds["window_stop"] = (["windows"], gene_stop)
# this only works as long as the windows on different chromosomes are non-overlapping
# ld_matrix looses all information about contigs
# is there a way to do this properly in chunks and have genee work with the chunks?
>>> ld_temp = ld_matrix(ds).compute().pivot(index="i", columns="j", values="value").fillna(-1).to_numpy()
>>> ld = (ld_temp + ld_temp.T) / 2
>>> df = genee(ds, ld).compute()
Returns
-------
A dataframe containing the following fields:
Expand All @@ -38,6 +77,8 @@ def genee(ds: Dataset, ld: ArrayLike, *, reg_covar: float = 0.000001) -> DataFra
- ``q_var``: test variance
- ``pval``: p-value
Each value corresponds to a window in the input dataset.
References
----------
[1] - W. Cheng, S. Ramachandran, and L. Crawford (2020).
Expand Down Expand Up @@ -83,7 +124,7 @@ def genee_EM(betas, reg_covar=0.000001):

covars = best_gmm.covariances_.squeeze()
if best_gmm.n_components == 1: # pragma: no cover
epsilon_effect = covars[0]
epsilon_effect = covars[0] if (covars.ndim > 0) else covars
else:
# TODO: handle case where first component composed more than 50% SNPs
# https://github.com/ramachandran-lab/genee/blob/a357a956241df93f16e07664e24f3aeac65f4177/genee/R/genee_EM.R#L28-L29
Expand Down Expand Up @@ -132,8 +173,13 @@ def genee_test(gene, ld, betas, epsilon_effect):
test_statistics = betas_g.T @ betas_g
t_var = np.diag((ld_g * epsilon_effect) @ (ld_g * epsilon_effect)).sum()

p_value_g = compute_p_values(e_values, test_statistics)
p_value_g = ensure_positive_real(p_value_g)
if all(e_values == 0.0):
warnings.warn("All eigenvalues of the given gene LD matrix are zero. Cannot compute p-value.",
UserWarning)
p_value_g = np.real_if_close(np.nan)
else:
p_value_g = compute_p_values(e_values, test_statistics)
p_value_g = ensure_positive_real(p_value_g)

return test_statistics.squeeze().item(), t_var, p_value_g.squeeze().item()

Expand Down

0 comments on commit 8d8e23e

Please sign in to comment.