Set up conda with the required packages.
Add channels:
conda config --add channels shahcompbio
conda config --add channels dranew
conda config --add channels aroth85
conda config --add channels componc
conda config --add channels bioconda
//added 10/10 by Douglas
channels also needed for juno:
conda config --add channels r
conda config --add channels conda-forge
packages removed:
- openjdk==8.0.121=1
- matplotlib==2.1.1=py27_0
- libssh2==1.8.0=2
- r-pillar==1.2.2=r341h6115d3f_1
- qt==5.6.2=6
Then create an environment with the required packages:
conda create --name wgspipeline --file conda_packages.txt
Activate the environment:
source activate wgspipeline
Install pacakges from source:
pip install git+https://bitbucket.org/aroth85/biowrappers.git@singlecell
pip install git+https://github.com/shahcompbio/pypeliner.git@master
pip install git+https://github.com/shahcompbio/wgs.git@master
pip install git+https://dgrewal@svn.bcgsc.ca/bitbucket/scm/~dgrewal/vizutils.git
pip install pip install git+https://svn.bcgsc.ca/bitbucket/scm/museq/museqportrait.git@version_0.99.13
SAMPLE_ID:
fastqs:
normal:
NORMAL_SAMPLE_LANE_1_ID:
fastq1: /path/to/fastq_r1.fastq.gz
fastq2: /path/to/fastq_r2.fastq.gz
NORMAL_SAMPLE_LANE_2_ID:
fastq1: /path/to/fastq_r1.fastq.gz
fastq2: /path/to/fastq_r2.fastq.gz
tumour:
TUMOUR_SAMPLE_LANE_1_ID:
fastq1: /path/to/fastq_r1.fastq.gz
fastq2: /path/to/fastq_r2.fastq.gz
TUMOUR_SAMPLE_LANE_2_ID:
fastq1: /path/to/fastq_r1.fastq.gz
fastq2: /path/to/fastq_r2.fastq.gz
TUMOUR_SAMPLE_LANE_3_ID:
fastq1: /path/to/fastq_r1.fastq.gz
fastq2: /path/to/fastq_r2.fastq.gz
normal: /path/to/output/aligned/normal.bam
normal_id: NORMAL_SAMPLE_ID
tumour: /path/to/output/aligned/tumour.bam
tumour_id: TUMOUR_SAMPLE_ID
breakpoints: /path/to/destruct/breakpoints.csv
The fastqs section is only required for the alignment workflow and the full workflow (if the alignment flag is set). The breakpoints section is only required for the copynumber workflow if you need remixt results.
wgs all --input_yaml input.yaml --out_dir results --tmpdir tmp --pipelinedir pipeline --submit lsf --maxjobs 1000 --nocleanup --loglevel DEBUG --nativespec ' -n {ncpus} -W {walltime} -R "rusage[mem={mem}]span[ptile={ncpus}]select[type==CentOS7]"' --config_override '{"cluster":"juno"}' --context_config context.yaml --alignment --sentinal_only --rerun
wgs alignment --input_yaml input.yaml --out_dir results --tmpdir tmp --pipelinedir pipeline --submit lsf --maxjobs 1000 --nocleanup --loglevel DEBUG --nativespec ' -n {ncpus} -W {walltime} -R "rusage[mem={mem}]span[ptile={ncpus}]select[type==CentOS7]"' --config_override '{"cluster":"juno"}' --context_config context.yaml --alignment --sentinal_only --rerun
wgs variant_calling --input_yaml input.yaml --out_dir results --tmpdir tmp --pipelinedir pipeline --submit lsf --maxjobs 1000 --nocleanup --loglevel DEBUG --nativespec ' -n {ncpus} -W {walltime} -R "rusage[mem={mem}]span[ptile={ncpus}]select[type==CentOS7]"' --config_override '{"cluster":"juno"}' --context_config context.yaml --alignment --sentinal_only --rerun
wgs copynumber_calling --input_yaml input.yaml --out_dir results --tmpdir tmp --pipelinedir pipeline --submit lsf --maxjobs 1000 --nocleanup --loglevel DEBUG --nativespec ' -n {ncpus} -W {walltime} -R "rusage[mem={mem}]span[ptile={ncpus}]select[type==CentOS7]"' --config_override '{"cluster":"juno"}' --context_config context.yaml --alignment --sentinal_only --rerun
wgs breakpoint_calling --input_yaml input.yaml --out_dir results --tmpdir tmp --pipelinedir pipeline --submit lsf --maxjobs 1000 --nocleanup --loglevel DEBUG --nativespec ' -n {ncpus} -W {walltime} -R "rusage[mem={mem}]span[ptile={ncpus}]select[type==CentOS7]"' --config_override '{"cluster":"juno"}' --context_config context.yaml --alignment --sentinal_only --rerun
--submit lsf
to run on LSF clusters
--submit local
to run locally
--submit asyncqsub
to run on SGE based cluster
use --nativespec
to specify the cluster job submission format. You can use the following keywords as place holder and pipeline will automatically decide the best values for the jobs.
we support the following:
{mem}
will be replaced with the optimal memory usage for each job
{ncpus}
will be replaced with the optimal number of cpus for each job
{walltime}
will be replaced with the optimal walltime for each job
These parameters will be passed to the job scheduler when running the pipeline.
For instance on a LSF based cluster, the nativespec might look like the following:
--nativespec ' -n {ncpus} -W {walltime} -R "rusage[mem={mem}]span[ptile={ncpus}]select[type==CentOS7]"'
The pipeline looks at the files in the filesystem on reruns to track completed jobs. On some filesystems this might cause slowdowns. To replace this with a database please specify --sentinel_only
The pipeline defaults to preset values for most configuration parameters. You can change these parameters by:
- generate a new config file with
wgs generate_config --pipeline_config config.yaml
- open the generated config yaml file, make changes where necessary and save it.
- launch the pipeline with the
--config_file /path/to/config
parameter.
You can also override certain values in the config file with the --config_override
parameter. The config_override and config_file are mutually exclusive options.
The config override option accepts a json object. this json will override values in the internal config file. please generate a new config file for reference.
The pipeline also comes with some presets for config override. For instance:
- if you're running this pipeline on MSKCC's juno cluster, please specify
--config_override '{"cluster":"juno"}'
. - If you're running the pipeline on BCCRC's shahlab cluster, please specify
--config_override '{"cluster":"shahlab"}'
--rerun
will run all jobs again, even if they've been run before.
you can also specify a context config file to override the job execution parameters for certain job types. For instance:
--context_config context.yaml
where context.yaml is
context:
alljobs:
name_match: '*'
ctx:
walltime: '04:00'
walltime_num_retry: 5
walltime_retry_increment: '48:00'
will update all jobs to 4 hrs of walltime and the pipeline will retry each job up to 5 times on failure and increment walltime by 2 days on each retry.
specifies the maximum number of jobs that pipeline will run in parallel.
do not clean up intermediates
logging level.