Image labeling in multiple annotation formats:
- PASCAL VOC (= darkflow)
- YOLO darknet
- ask for more (create a new issue)...
- Jan 2019: easy and quick bounding-boxe's resizing!
- Jan 2019: video object tracking with OpenCV trackers!
- TODO: Label photos via Google drive to allow "team online labeling". New Features Discussion
To start using the YOLO Bounding Box Tool you need to download the latest release or clone the repo:
git clone https://github.com/Cartucho/OpenLabeling
You need to install:
- Python
- OpenCV version >= 3.0
python -mpip install -U pip
python -mpip install -U opencv-python
python -mpip install -U opencv-contrib-python
- numpy, tqdm and lxml:
python -mpip install -U numpy
python -mpip install -U tqdm
python -mpip install -U lxml
Alternatively, you can install everything at once by simply running:
python -mpip install -U pip
python -mpip install -U -r requirements.txt
Step by step:
-
Open the
main/
directory -
Insert the input images and videos in the folder input/
-
Insert the classes in the file class_list.txt (one class name per line)
-
Run the code:
python main.py [-h] [-i] [-o] [-t] optional arguments: -h, --help Show this help message and exit -i, --input Path to images and videos input folder | Default: input/ -o, --output Path to output folder (if using the PASCAL VOC format it's important to set this path correctly) | Default: output/ -t, --thickness Bounding box and cross line thickness (int) | Default: -t 1
-
You can find the annotations in the folder output/
Keyboard, press:
Key | Description |
---|---|
a/d | previous/next image |
s/w | previous/next class |
e | edges |
h | help |
q | quit |
Video:
Key | Description |
---|---|
p | predict the next frames' labels |
Mouse:
- Use two separate left clicks to do each bounding box
- Right-click -> quick delete!
- Use the middle mouse to zoom in and out
- Use double click to select a bounding box
-
João Cartucho - Please give me your feedback: to.cartucho@gmail.com
Feel free to contribute