This repository is the official implementation of the following paper:
Label-Efficient Online Continual Object Detection in Streaming Video
Jay Zhangjie Wu,
David Junhao Zhang,
Wynne Hsu,
Mengmi Zhang,
Mike Zheng Shou
Clone the repository and install the dependencies:
git clone https://github.com/showlab/Efficient-CLS.git
pip install Efficient-CLS/requirements.txt
python -m pip install -e Efficient-CLS
We provide the processed datasets in the Google Drive (OAK, EgoObjects). Download the datasets and modify the DATA_DIR
in configs/efficient_cls.yaml
to the corresponding directory.
We use Faster R-CNN on PASCAL VOC object detection. Run the following commands to download the pretrained weights in Detectron2 Model Zoo.
mkdir weights && wget https://dl.fbaipublicfiles.com/detectron2/PascalVOC-Detection/faster_rcnn_R_50_C4/142202221/model_final_b1acc2.pkl -P weights/
To start training, run this:
# E.g., run experiment on OAK dataset at 4/16 annotation cost, with 12/16 unlabeled data trained with pseudo labels.
python train.py --exp=train --dataset=oak --num_oracle=4 --num_pseudo=12 --replay_size=16
- This code builds on detectron2. Thanks for opensourcing!
- Thanks the contributors of OAK and EgoObjects for sharing the datasets!