Skip to content

shun-dong/Robust_Prover

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

18 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

project tags
Robust_Prover

Robust_Prover ├── README.md ├── .git/ ├── .gitattributes ├── .gitignore ├── .venv/ ├── Data/ ├── Documents/ └── Scripts/

Robust Mathematical Problem Solver

flowchart
    subgraph Prepare
        A(Natural Language Question) --Filter --> C[/Natural Language Question/]
        C'[/Natural Language Answer/]
        
        C -.-> C'
    end

    subgraph Solve
        D[/Lean Language Question/]
        D'[/Lean Language Answer/]
        F[/Answer & Feedback/]
        G{Correct?}
        H[/Final Answer/]

        C --> D
        D --> D'
        C -.-> D'
        C' -.-> D'
        D' -- check --> F
        F --> G
        G -- Yes --> H
        G -- No --> fix --> D'
    end

    H -.-> I(Natural Language Answer)
Loading

Info

Programme Cohort: Large Language Models & Generative AI
Course Group: GEA-Group 2
Group Name: Robust Mathematical Problem Solver
Group Members: Liu Peixuan, Long Haobo, Cao Shuhan, Wu Jiayu, Wu Xuanyu, Wei Yanran, Jin Huiyan
Slogan: Logic. Rigor. Automation.

Proposed Workflow

  1. Preprocessing for interference removal
  2. Generate natural language reasoning
  3. Formalize into proof language (e.g. Lean) for automated verification
  4. Adjust based on feedback

Extension directions:

  1. Fine-tune models for better task performance
  2. Design workflows optimized for formalization from existing papers

Development Team:

  1. Anti-interference implementation (Python) - Long Haobo
  2. Natural language reasoning generation & transformation (LLM & Agent) - Cao Shuhan
  3. Auto-correction implementation (Agent) - Wu Jiayu
    Data Team:
  4. Math problem dataset collection - Wu Xuanyu
    Evaluation Team:
  5. Test framework & metrics - Wei Yanran
  6. Results analysis - Jin Huiyan
    Coordination Team:
  7. Progress tracking & documentation - Liu Peixuan

Key References

  1. DeepSeek-Prover-V2: Advancing Formal Mathematical Reasoning via Reinforcement Learning for Subgoal Decomposition
  2. Cats Confuse Reasoning LLM: Query Agnostic Adversarial Triggers for Reasoning Models
  3. A Language-Agent Approach to Formal Theorem-Proving
  4. An In-Context Learning Agent for Formal Theorem-Proving
  5. Prover Agent: An Agent-based Framework for Formal Mathematical Proofs

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 4

  •  
  •  
  •  
  •