This is a demo program of PatchRNN, which identifies security patches using recurrent neural networks. The code changes in patches are processed using a twin RNN network, while the commit message is processed with a TextRNN network. Afterward, the information from the commit message and the code revision is fused in order to get the final prediction using a multi-layer perceptron.
More details about the PatchRNN can be found in the paper "PatchRNN: A Deep Learning-Based System for Security Patch Identification", to appear in the MILCOM 2021, San Diego, USA, November 29–December 2, 2021.
To cite our work, please use
@INPROCEEDINGS{PatchRNN2021Wang,
author={Wang, Xinda and Wang, Shu and Feng, Pengbin and Sun, Kun and Jajodia, Sushil and Benchaaboun, Sanae and Geck, Frank},
booktitle={MILCOM 2021 - 2021 IEEE Military Communications Conference (MILCOM)},
title={PatchRNN: A Deep Learning-Based System for Security Patch Identification},
year={2021},
volume={},
number={},
pages={595-600},
doi={10.1109/MILCOM52596.2021.9652940}}
This demo program is base on the PatchRNN Developer Edition (S2020.08.08-V4), developed by Shu Wang.
You can also visit PatchRNN official website: https://shuwang127.github.io/PatchRNN-demo/.
We use Ubuntu 20.04.2.0 LTS (Focal Fossa) desktop version.
Download Link: https://releases.ubuntu.com/20.04/ubuntu-20.04.2.0-desktop-amd64.iso
The virtualization software in our experiments is VirtualBox 5.2.24.
Download Link: https://www.virtualbox.org/wiki/Download_Old_Builds_5_2.
You can use other software like VMware Workstation.
System configurations:
RAM: 2GB
Disk: 25GB
CPU: 1 core in i7-7700HQ @ 2.8GHz
We use home
directory to store the project folder.
cd ~
Install git
tool.
sudo apt install git
Download PatchRNN-demo
project to local disk. (You may need to enter your github account/password.)
git clone https://github.com/shuwang127/PatchRNN-demo
Install pip
tool for python3
.
sudo apt install python3-pip
Install common dependencies.
pip3 install nltk==3.3
pip3 install natsort
pip3 install pandas
pip3 install sklearn
Install CPU-version PyTorch. Official website: https://pytorch.org/.
pip3 install torch==1.7.1+cpu torchvision==0.8.2+cpu torchaudio==0.7.2 -f https://download.pytorch.org/whl/torch_stable.html
Install clang
tool.
pip3 install clang==6.0.0.2
Configurate the clang environment.
sudo apt install clang
cd /usr/lib/x86_64-linux-gnu/
sudo ln -s libclang-*.so.1 libclang.so
cd ~/PatchRNN-demo/
python3 demo.py
There are 56 input test samples stored in ~/PatchRNN-demo/testdata/
, the output results are saved in ~/PatchRNN-demo/results/results.txt
.
cat results/results.txt
You can find the results.
.//testdata/nginx/release-1.19.0_release-1.19.1/0a683fdd.patch,1
.//testdata/nginx/release-1.19.0_release-1.19.1/1bbc37d3.patch,1
.//testdata/nginx/release-1.19.0_release-1.19.1/2afc050b.patch,0
.//testdata/nginx/release-1.19.0_release-1.19.1/2d4f04bb.patch,0
.//testdata/nginx/release-1.19.0_release-1.19.1/6bb43361.patch,1
...