Skip to content
/ damast Public

damast: A Python library to facilitate the creation of reproducible data processing pipelines and usage of FAIR data

License

Notifications You must be signed in to change notification settings

simula/damast

Folders and files

NameName
Last commit message
Last commit date

Latest commit

d131099 · Mar 11, 2025
Mar 7, 2025
Mar 7, 2025
Mar 11, 2025
Mar 11, 2025
Mar 31, 2023
Apr 27, 2023
Apr 27, 2023
Jan 22, 2024
Mar 7, 2025
Mar 6, 2025
Mar 11, 2025
Mar 7, 2025
Apr 12, 2023
Mar 9, 2023
Mar 11, 2025
Mar 9, 2023
Mar 7, 2025

Repository files navigation

Supported Python Versions test workflow docs workflow

damast: Creation of reproducible data processing pipelines

The main purpose of this library is to faciliate the reusability of data and data processing pipelines. For this, damast introduces a means to associate metadata with data frames and enables consistency checking.

To ensure semantic consistency, transformation steps in a pipeline can be annotated with allowed data ranges for inputs and outputs, as well as units.

class LatLonTransformer(PipelineElement):
    """
    The LatLonTransformer will consume a lat(itude) and a lon(gitude) column and perform
    cyclic normalization. It will add four columns to a dataframe, namely lat_x, lat_y, lon_x, lon_y.
    """
    @damast.core.describe("Lat/Lon cyclic transformation")
    @damast.core.input({
        "lat": {"unit": units.deg},
        "lon": {"unit": units.deg}
    })
    @damast.core.output({
        "lat_x": {"value_range": MinMax(-1.0, 1.0)},
        "lat_y": {"value_range": MinMax(-1.0, 1.0)},
        "lon_x": {"value_range": MinMax(-1.0, 1.0)},
        "lon_y": {"value_range": MinMax(-1.0, 1.0)}
    })
    def transform(self, df: AnnotatedDataFrame) -> AnnotatedDataFrame:
        lat_cyclic_transformer = CycleTransformer(features=["lat"], n=180.0)
        lon_cyclic_transformer = CycleTransformer(features=["lon"], n=360.0)

        _df = lat_cyclic_transformer.fit_transform(df=df)
        _df = lon_cyclic_transformer.fit_transform(df=_df)
        df._dataframe = _df
        return df

For detailed examples, check the documentation at: https://simula.github.io/damast

Installation and Development Setup

Firstly, you will want to create you an isolated development environment for Python, that being conda or venv-based. The following will go through a venv based setup.

Let us assume you operate with a 'workspace' directory for this project:

    cd workspace

Here, you will create a virtual environment. Get an overview over venv (command):

    python -m venv --help

Create your venv and activate it:

    python -m venv damast-venv
    source damast-venv/bin/activate

Clone the repo and install:

    git clone https://github.com/simula/damast
    cd damast
    pip install -e ".[test,dev]"

or alternatively:

    pip install damast[test,dev]

Docker Container

If you prefer to work or start with a docker container you can build it using the provided Dockerfile

    docker build -t damast:latest -f Dockerfile .

To enter the container:

    docker run -it --rm damast:latest /bin/bash

Usage

To get the usage documentation it is easiest to check the published documentation here.

Otherwise, you can also locally generate the latest documentation once you installed the package:

    tox -e build_docs

Then open the documentation with a browser:

    <yourbrowser> _build/html/index.html

Testing

Install the project and use the predefined default test environment:

tox -e py

Contributing

This project is open to contributions. For details on how to contribute please check the Contribution Guidelines

License

This project is licensed under the BSD-3-Clause License.

Copyright

Copyright (c) 2023-2025 Simula Research Laboratory, Oslo, Norway

Acknowledgments

This work has been derived from work that is part of the T-SAR project Some derived work is mainly part of the specific data processing for the 'maritime' domain.

The development of this library is part of the EU-project AI4COPSEC which receives funding from the Horizon Europe framework programme under Grant Agreement N. 101190021.