Skip to content

Commit

Permalink
Merge branch 'development' into dependabot/cargo/ndarray-0.16
Browse files Browse the repository at this point in the history
  • Loading branch information
morenol authored Nov 25, 2024
2 parents 1f945b4 + 4523ac7 commit 5448ede
Show file tree
Hide file tree
Showing 30 changed files with 195 additions and 237 deletions.
2 changes: 1 addition & 1 deletion .github/workflows/ci.yml
Original file line number Diff line number Diff line change
Expand Up @@ -36,7 +36,7 @@ jobs:
- name: Install Rust toolchain
uses: actions-rs/toolchain@v1
with:
toolchain: stable
toolchain: 1.81 # 1.82 seems to break wasm32 tests https://github.com/rustwasm/wasm-bindgen/issues/4274
target: ${{ matrix.platform.target }}
profile: minimal
default: true
Expand Down
2 changes: 1 addition & 1 deletion Cargo.toml
Original file line number Diff line number Diff line change
Expand Up @@ -48,7 +48,7 @@ getrandom = { version = "0.2.8", optional = true }
wasm-bindgen-test = "0.3"

[dev-dependencies]
itertools = "0.12.0"
itertools = "0.13.0"
serde_json = "1.0"
bincode = "1.3.1"

Expand Down
8 changes: 4 additions & 4 deletions src/algorithm/neighbour/cover_tree.rs
Original file line number Diff line number Diff line change
Expand Up @@ -124,7 +124,7 @@ impl<T: Debug + PartialEq, D: Distance<T>> CoverTree<T, D> {
current_cover_set.push((d, &self.root));

let mut heap = HeapSelection::with_capacity(k);
heap.add(std::f64::MAX);
heap.add(f64::MAX);

let mut empty_heap = true;
if !self.identical_excluded || self.get_data_value(self.root.idx) != p {
Expand All @@ -145,7 +145,7 @@ impl<T: Debug + PartialEq, D: Distance<T>> CoverTree<T, D> {
}

let upper_bound = if empty_heap {
std::f64::INFINITY
f64::INFINITY
} else {
*heap.peek()
};
Expand Down Expand Up @@ -291,7 +291,7 @@ impl<T: Debug + PartialEq, D: Distance<T>> CoverTree<T, D> {
} else {
let max_dist = self.max(point_set);
let next_scale = (max_scale - 1).min(self.get_scale(max_dist));
if next_scale == std::i64::MIN {
if next_scale == i64::MIN {
let mut children: Vec<Node> = Vec::new();
let mut leaf = self.new_leaf(p);
children.push(leaf);
Expand Down Expand Up @@ -435,7 +435,7 @@ impl<T: Debug + PartialEq, D: Distance<T>> CoverTree<T, D> {

fn get_scale(&self, d: f64) -> i64 {
if d == 0f64 {
std::i64::MIN
i64::MIN
} else {
(self.inv_log_base * d.ln()).ceil() as i64
}
Expand Down
10 changes: 1 addition & 9 deletions src/algorithm/neighbour/fastpair.rs
Original file line number Diff line number Diff line change
Expand Up @@ -52,10 +52,8 @@ pub struct FastPair<'a, T: RealNumber + FloatNumber, M: Array2<T>> {
}

impl<'a, T: RealNumber + FloatNumber, M: Array2<T>> FastPair<'a, T, M> {
///
/// Constructor
/// Instantiate and inizialise the algorithm
///
/// Instantiate and initialize the algorithm
pub fn new(m: &'a M) -> Result<Self, Failed> {
if m.shape().0 < 3 {
return Err(Failed::because(
Expand All @@ -74,10 +72,8 @@ impl<'a, T: RealNumber + FloatNumber, M: Array2<T>> FastPair<'a, T, M> {
Ok(init)
}

///
/// Initialise `FastPair` by passing a `Array2`.
/// Build a FastPairs data-structure from a set of (new) points.
///
fn init(&mut self) {
// basic measures
let len = self.samples.shape().0;
Expand Down Expand Up @@ -158,9 +154,7 @@ impl<'a, T: RealNumber + FloatNumber, M: Array2<T>> FastPair<'a, T, M> {
self.neighbours = neighbours;
}

///
/// Find closest pair by scanning list of nearest neighbors.
///
#[allow(dead_code)]
pub fn closest_pair(&self) -> PairwiseDistance<T> {
let mut a = self.neighbours[0]; // Start with first point
Expand Down Expand Up @@ -217,9 +211,7 @@ mod tests_fastpair {
use super::*;
use crate::linalg::basic::{arrays::Array, matrix::DenseMatrix};

///
/// Brute force algorithm, used only for comparison and testing
///
pub fn closest_pair_brute(fastpair: &FastPair<f64, DenseMatrix<f64>>) -> PairwiseDistance<f64> {
use itertools::Itertools;
let m = fastpair.samples.shape().0;
Expand Down
4 changes: 2 additions & 2 deletions src/algorithm/neighbour/linear_search.rs
Original file line number Diff line number Diff line change
Expand Up @@ -61,7 +61,7 @@ impl<T, D: Distance<T>> LinearKNNSearch<T, D> {

for _ in 0..k {
heap.add(KNNPoint {
distance: std::f64::INFINITY,
distance: f64::INFINITY,
index: None,
});
}
Expand Down Expand Up @@ -215,7 +215,7 @@ mod tests {
};

let point_inf = KNNPoint {
distance: std::f64::INFINITY,
distance: f64::INFINITY,
index: Some(3),
};

Expand Down
4 changes: 2 additions & 2 deletions src/algorithm/sort/heap_select.rs
Original file line number Diff line number Diff line change
Expand Up @@ -133,7 +133,7 @@ mod tests {
#[test]
fn test_add1() {
let mut heap = HeapSelection::with_capacity(3);
heap.add(std::f64::INFINITY);
heap.add(f64::INFINITY);
heap.add(-5f64);
heap.add(4f64);
heap.add(-1f64);
Expand All @@ -151,7 +151,7 @@ mod tests {
#[test]
fn test_add2() {
let mut heap = HeapSelection::with_capacity(3);
heap.add(std::f64::INFINITY);
heap.add(f64::INFINITY);
heap.add(0.0);
heap.add(8.4852);
heap.add(5.6568);
Expand Down
1 change: 1 addition & 0 deletions src/algorithm/sort/quick_sort.rs
Original file line number Diff line number Diff line change
Expand Up @@ -3,6 +3,7 @@ use num_traits::Num;
pub trait QuickArgSort {
fn quick_argsort_mut(&mut self) -> Vec<usize>;

#[allow(dead_code)]
fn quick_argsort(&self) -> Vec<usize>;
}

Expand Down
8 changes: 4 additions & 4 deletions src/cluster/kmeans.rs
Original file line number Diff line number Diff line change
Expand Up @@ -96,7 +96,7 @@ impl<TX: Number, TY: Number, X: Array2<TX>, Y: Array1<TY>> PartialEq for KMeans<
return false;
}
for j in 0..self.centroids[i].len() {
if (self.centroids[i][j] - other.centroids[i][j]).abs() > std::f64::EPSILON {
if (self.centroids[i][j] - other.centroids[i][j]).abs() > f64::EPSILON {
return false;
}
}
Expand Down Expand Up @@ -270,7 +270,7 @@ impl<TX: Number, TY: Number, X: Array2<TX>, Y: Array1<TY>> KMeans<TX, TY, X, Y>

let (n, d) = data.shape();

let mut distortion = std::f64::MAX;
let mut distortion = f64::MAX;
let mut y = KMeans::<TX, TY, X, Y>::kmeans_plus_plus(data, parameters.k, parameters.seed);
let mut size = vec![0; parameters.k];
let mut centroids = vec![vec![0f64; d]; parameters.k];
Expand Down Expand Up @@ -331,7 +331,7 @@ impl<TX: Number, TY: Number, X: Array2<TX>, Y: Array1<TY>> KMeans<TX, TY, X, Y>
let mut row = vec![0f64; x.shape().1];

for i in 0..n {
let mut min_dist = std::f64::MAX;
let mut min_dist = f64::MAX;
let mut best_cluster = 0;

for j in 0..self.k {
Expand Down Expand Up @@ -361,7 +361,7 @@ impl<TX: Number, TY: Number, X: Array2<TX>, Y: Array1<TY>> KMeans<TX, TY, X, Y>
.cloned()
.collect();

let mut d = vec![std::f64::MAX; n];
let mut d = vec![f64::MAX; n];
let mut row = vec![TX::zero(); data.shape().1];

for j in 1..k {
Expand Down
Loading

0 comments on commit 5448ede

Please sign in to comment.