Skip to content

Commit

Permalink
format
Browse files Browse the repository at this point in the history
  • Loading branch information
Mec-iS committed Jan 20, 2025
1 parent 609f802 commit fc7f2e6
Show file tree
Hide file tree
Showing 5 changed files with 31 additions and 30 deletions.
4 changes: 3 additions & 1 deletion src/algorithm/neighbour/fastpair.rs
Original file line number Diff line number Diff line change
Expand Up @@ -212,7 +212,9 @@ mod tests_fastpair {
use crate::linalg::basic::{arrays::Array, matrix::DenseMatrix};

/// Brute force algorithm, used only for comparison and testing
pub fn closest_pair_brute(fastpair: &FastPair<'_, f64, DenseMatrix<f64>>) -> PairwiseDistance<f64> {
pub fn closest_pair_brute(
fastpair: &FastPair<'_, f64, DenseMatrix<f64>>,
) -> PairwiseDistance<f64> {
use itertools::Itertools;
let m = fastpair.samples.shape().0;

Expand Down
4 changes: 1 addition & 3 deletions src/linalg/basic/matrix.rs
Original file line number Diff line number Diff line change
Expand Up @@ -579,9 +579,7 @@ impl<T: Debug + Display + Copy + Sized> Array<T, (usize, usize)> for DenseMatrix
}
}

impl<T: Debug + Display + Copy + Sized> MutArray<T, (usize, usize)>
for DenseMatrixMutView<'_, T>
{
impl<T: Debug + Display + Copy + Sized> MutArray<T, (usize, usize)> for DenseMatrixMutView<'_, T> {
fn set(&mut self, pos: (usize, usize), x: T) {
if self.column_major {
self.values[pos.0 + pos.1 * self.stride] = x;
Expand Down
8 changes: 2 additions & 6 deletions src/linalg/ndarray/matrix.rs
Original file line number Diff line number Diff line change
Expand Up @@ -146,9 +146,7 @@ impl<T: Number + RealNumber> SVDDecomposable<T> for ArrayBase<OwnedRepr<T>, Ix2>

impl<T: Debug + Display + Copy + Sized> ArrayView2<T> for ArrayView<'_, T, Ix2> {}

impl<T: Debug + Display + Copy + Sized> BaseArray<T, (usize, usize)>
for ArrayViewMut<'_, T, Ix2>
{
impl<T: Debug + Display + Copy + Sized> BaseArray<T, (usize, usize)> for ArrayViewMut<'_, T, Ix2> {
fn get(&self, pos: (usize, usize)) -> &T {
&self[[pos.0, pos.1]]
}
Expand All @@ -175,9 +173,7 @@ impl<T: Debug + Display + Copy + Sized> BaseArray<T, (usize, usize)>
}
}

impl<T: Debug + Display + Copy + Sized> MutArray<T, (usize, usize)>
for ArrayViewMut<'_, T, Ix2>
{
impl<T: Debug + Display + Copy + Sized> MutArray<T, (usize, usize)> for ArrayViewMut<'_, T, Ix2> {
fn set(&mut self, pos: (usize, usize), x: T) {
self[[pos.0, pos.1]] = x
}
Expand Down
14 changes: 8 additions & 6 deletions src/preprocessing/numerical.rs
Original file line number Diff line number Diff line change
Expand Up @@ -172,12 +172,14 @@ where
T: Number + RealNumber,
M: Array2<T>,
{
columns.first().cloned().map(|output_matrix| columns
.iter()
.skip(1)
.fold(output_matrix, |current_matrix, new_colum| {
current_matrix.h_stack(new_colum)
}))
columns.first().cloned().map(|output_matrix| {
columns
.iter()
.skip(1)
.fold(output_matrix, |current_matrix, new_colum| {
current_matrix.h_stack(new_colum)
})
})
}

#[cfg(test)]
Expand Down
31 changes: 17 additions & 14 deletions src/tree/decision_tree_classifier.rs
Original file line number Diff line number Diff line change
Expand Up @@ -77,9 +77,9 @@ use serde::{Deserialize, Serialize};

use crate::api::{Predictor, SupervisedEstimator};
use crate::error::Failed;
use crate::linalg::basic::arrays::MutArray;
use crate::linalg::basic::arrays::{Array1, Array2, MutArrayView1};
use crate::linalg::basic::matrix::DenseMatrix;
use crate::linalg::basic::arrays::MutArray;
use crate::numbers::basenum::Number;
use crate::rand_custom::get_rng_impl;

Expand Down Expand Up @@ -890,7 +890,6 @@ impl<TX: Number + PartialOrd, TY: Number + Ord, X: Array2<TX>, Y: Array1<TY>>
importances
}


/// Predict class probabilities for the input samples.
///
/// # Arguments
Expand Down Expand Up @@ -933,25 +932,25 @@ impl<TX: Number + PartialOrd, TY: Number + Ord, X: Array2<TX>, Y: Array1<TY>>
/// of the input sample belonging to each class.
fn predict_proba_for_row(&self, x: &X, row: usize) -> Vec<f64> {
let mut node = 0;

while let Some(current_node) = self.nodes().get(node) {
if current_node.true_child.is_none() && current_node.false_child.is_none() {
// Leaf node reached
let mut probs = vec![0.0; self.classes().len()];
probs[current_node.output] = 1.0;
return probs;
}

let split_feature = current_node.split_feature;
let split_value = current_node.split_value.unwrap_or(f64::NAN);

if x.get((row, split_feature)).to_f64().unwrap() <= split_value {
node = current_node.true_child.unwrap();
} else {
node = current_node.false_child.unwrap();
}
}

// This should never happen if the tree is properly constructed
vec![0.0; self.classes().len()]
}
Expand All @@ -960,8 +959,8 @@ impl<TX: Number + PartialOrd, TY: Number + Ord, X: Array2<TX>, Y: Array1<TY>>
#[cfg(test)]
mod tests {
use super::*;
use crate::linalg::basic::matrix::DenseMatrix;
use crate::linalg::basic::arrays::Array;
use crate::linalg::basic::matrix::DenseMatrix;

#[test]
fn search_parameters() {
Expand Down Expand Up @@ -1020,24 +1019,28 @@ mod tests {
&[6.9, 3.1, 4.9, 1.5],
&[5.5, 2.3, 4.0, 1.3],
&[6.5, 2.8, 4.6, 1.5],
]).unwrap();
])
.unwrap();
let y: Vec<usize> = vec![0, 0, 0, 0, 0, 1, 1, 1, 1, 1];

let tree = DecisionTreeClassifier::fit(&x, &y, Default::default()).unwrap();
let probabilities = tree.predict_proba(&x).unwrap();

assert_eq!(probabilities.shape(), (10, 2));

for row in 0..10 {
let row_sum: f64 = probabilities.get_row(row).sum();
assert!((row_sum - 1.0).abs() < 1e-6, "Row probabilities should sum to 1");
assert!(
(row_sum - 1.0).abs() < 1e-6,
"Row probabilities should sum to 1"
);
}

// Check if the first 5 samples have higher probability for class 0
for i in 0..5 {
assert!(probabilities.get((i, 0)) > probabilities.get((i, 1)));
}

// Check if the last 5 samples have higher probability for class 1
for i in 5..10 {
assert!(probabilities.get((i, 1)) > probabilities.get((i, 0)));
Expand Down

0 comments on commit fc7f2e6

Please sign in to comment.