
Moment Localization Evaluation Framework
Explore the docs »
View Demo
·
Report Bug
·
Request Feature
Table of Contents
MoLEF is a moment localization evaluation framework for video and text multimodal research. MoLEF contains reference implementations of state-of-the-art video and language models. See full list of project inside or built on MoLEF.
MoLEF is powered by PyTorch, allows distributed parallel training and flexible experiments by embedding custom datasets and models.
MoLEF also acts starter codebase for challenges around video and text datasets (ActivityNet-captions, Charades-STA, DiDeMo, TACoS, YouCook2, MSR-VTT, TVR).
The below image is illustrated our framework, MoLEF.
This is an example of how you may give instructions on setting up your project locally. To get a local copy up and running follow these simple example steps.
See details in data/README.md.
Below is an example of how you can install an environment and MoLEF.
- Clone the repo
git clone https://github.com/snuviplab/MoLEF.git
- Install environment
conda create -n molef python=3.8 pip install six pip install torch==1.10.0+cu113 torchvision==0.11.1+cu113 torchaudio==0.10.0+cu113 -f https://download.pytorch.org/whl/cu113/torch_stable.html pip install torch-scatter torch-sparse torch-cluster torch-spline-conv torch-geometric -f https://data.pyg.org/whl/torch-1.10.0+cu113.html pip install -r requirements.txt python -m pip install -e.
python code/main.py --model model_name --mode train --word2vec-path data/glove.840B.300d.bin --dataset Tacos \
--feature-path data/tacos/org --train-data data/tacos/train_data.json \
--val-data data/tacos/val_data.json --test-data data/tacos/test_data.json \
--max-num-epochs 20 --warmup-updates 300 --warmup-init-lr 1e-06 --lr 8e-4 \
--weight-decay 1e-7 --model-saved-path results/ --cfg code/configs/model_name.yml
python code/main.py --model model_name --mode evaluation --word2vec-path data/glove.840B.300d.bin \
--dataset Tacos --feature-path data/tacos/org --train-data data/tacos/train_data.json \
--val-data data/tacos/val_data.json --test-data data/tacos/test_data.json --max-num-epochs 20 \
--warmup-updates 300 --warmup-init-lr 1e-06 --lr 8e-4 --weight-decay 1e-7 --model-saved-path results/ \
--cfg code/configs/model_name.yml
Jinyeong Chae - jiny491@gmail.com
Project Link: https://github.com/snuviplab/MoLEF
This project is licenced under the MIT Licence - see the LICENSE.md file for details.