Skip to content

Some frequently used cases with Elasticsearch using Mongossastic client.

Notifications You must be signed in to change notification settings

sonttran/elasticsearch

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

10 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Some frequently used cases with Elasticsearch

This code base is built on:

Use cases

Get document counts (same index, different categories)

  • Query and filter
    const query = { 
        food_drink      : { match: { topics: 'food_drink' } },
        fashion         : { match: { topics: 'fashion' } },
        real_estate     : { match: { topics: 'real_estate' } },
        vehicle         : { match: { topics: 'vehicle' } },
        job             : { match: { topics: 'job' } },
        learn           : { match: { topics: 'learn' } },
        emtertainment   : { match: { topics: 'emtertainment' } }
    };
    
    const filter = { range: { air: { gte: 1517778314240 } } }; // 30 days back from now
  • Elasticsearch client query
    esClient.search({
        index: 'posts', // elasticsearch index
        type: 'post', // elasticsearch type
        body: {
            "size"  : 12, // return no detail about found posts
            "query" : query, // plugin your query
            "aggs"  : { "messages" : { "filters" : { "filters" : filters }} }, // plugin your filter
            _source: ['title','url','photos','viewed'], //  controlled returned fields
        }
    }).then(resp => { cb(null, resp)}).catch(err => cb(err, null));
  • Sample response as below. In this case, we can have all counts of posting categories (Fashion, Vehicle, Real Estate, ...) returned in a single trip to Elasticsearch server.
    { 
        took: 15,
        timed_out: false,
        _shards: { total: 5, successful: 5, skipped: 0, failed: 0 },
        hits: { total: 12345678, max_score: null, hits: [ [length]: 0 ] },
        aggregations: { 
            messages: { 
                buckets: { 
                    food_drink      : { doc_count: 433 },
                    fashion         : { doc_count: 346 },
                    real_estate     : { doc_count: 2342 },
                    vehicle         : { doc_count: 424 },
                    job             : { doc_count: 4567 },
                    learn           : { doc_count: 8763 },
                    emtertainment   : { doc_count: 4542 },
                }
            }
        }
    }

Search for multi-field, nested-category document

    const keyword = { query_string: { query: 'nike shoes' } };
  • Build your filter for muti-field, nested-category filter. In this example, nested categories are locations and topics
    const filter = { bool: { should: [ 
        { bool: { must: [ 
            { range: { air: { gte: 1517795104902 } } },
            { term: { sellType: 'owner' } },
            { range: { price: { gte: 80, lte: 150 } } },
            { term: { locations: 'nation_wide' } },
            { term: { locCount: 1 } },
            { term: { topics: 'shoes' } } 
        ] } },
        { bool: { must: [
            { range: { air: { gte: 1517795104902 } } },
            { term: { sellType: 'owner' } },
            { range: { price: { gte: 80, lte: 150 } } },
            { term: { locations: 'nation_wide' } },
            { term: { locations: 'california' } },
            { term: { topics: 'shoes' } } 
        ] } }
    ] } };
  • Issue search query to Elasticsearch server.
    post.search({ bool: {
        must    : keyword,
        filter  : filter,
    }}, {
        size    : 10, // number of returned results
        from    : 0, // return from result 0. These two can be apply to create paging
        sort    : { createdAt: { order: 'desc' } }, // sort your result
        _source: ['title','url','price','photos','board'], // control returned fields
    }, function(err, searchRes) {
        if(err) { cb(err, null) } else { cb(null, {
            found       : searchRes.hits.total, 
            searchTime  : searchRes.took, 
            resList     : searchRes.hits.hits
        })}
    });

Multiple searches in one trip query

  • Construct your search with multiple queries and indices.
    esClient.msearch({
        body: [
            { index: 'blogs', type: 'blog' }, //  first query
            {
                size: 6, 
                query : { match: { air: true }},
                sort : [ { createdAt : { order : 'desc' }}], 
                _source: ['title','url',],
            },
            { index: 'blogs', type: 'blog' }, // second query, can search with different index too
            {
                size: 8, 
                query : {bool:{must:[{match:{type:'introduction'}},{match:{air:true}}]}},
                sort : [ { createdAt : { order : 'desc' }}],
                _source: ['title','url'],
            },
            { index: 'blogs', type: 'blog' }, // third query
            {
                size: 12, 
                query : {bool:{must:[{match:{type:'announcement'}},{match:{air:true}}]}},
                sort : [ { createdAt : { order : 'desc' }}],
                _source: ['title','url'],
            },
        ]
    }).then(result => {
        cb(null, result);
    }).catch(err => {
        cb(err, null);
    });
  • With this one trip to Elasticsearch server, you will have multiple search results returned with same order in your search structure. Example response:
    { responses: [ 
        {  // response for first query
            took        : 2,
            timed_out   : false,
            _shards     : [Object],
            hits        : [Object],
            status      : 200 
        },
        {  // response for second query
            took        : 0,
            timed_out   : false,
            _shards     : [Object],
            hits        : [Object],
            status: 200 
        },
        {  // response for third query
            took        : 1,
            timed_out   : false,
            _shards     : [Object],
            hits        : [Object],
            status      : 200 
        }
    ] }

About

Some frequently used cases with Elasticsearch using Mongossastic client.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published